Lecture 8, Jan 19, 2026

Optimal Graph-Based Planning

We are now interested in finding the optimal path, given nonuniform edge costs
Bellman’s principle of optimality: An optimal policy has the property that regardless of the initial
states and decisions, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the initial decisions, i.e. every point along the path is the start of another optimal path
— This means that an optimization problem in discrete time can be stated in a recursive, step-by-step
form where we start from the final stateKand work backwards

Define a cost of a sequence 7 as L(mg) = Zl(mk, ug) + lp(xp) where (2, ug) is the cost of taking
k=1

action uy in state zy, and lp(xp) is the cost of the final state

Let G*(x) denote the cost-to-go (i.e. optimal cost of a path to the goal from z), then we can work

backwards from the final state and get G*(x) = min { I(z,u) + G*(f(z,u)) } (Bellman’s equation) where

f(z,u) transitions state = by applying input u
— Using this we can define a value iteration approach
Dijkstra’s algorithm prioritizes the queue based on cost-to-come, so that at each step we expand the
node with the smallest path-to-come, so that at each step we expand the node with the smallest
path-to-come, so that at each step we expand the node with the smallest path-to-come, so that at each
step we expand the node with the smallest path-to-come
A* prioritizes states based on the sum of the cost-to-come and a lower bound heuristic on the cost-to-go
(e.g. Manhattan or Euclidean distance)
— This prevents us from expanding states that would not get us closer to the goal, since these states
will have a higher cost-to-come but not a lower heuristic estimate of the cost-to-go
Since the heuristic is a lower bound, the algorithm is still optimal
— Note that when we first find a path, we’re not done, but we can skip processing all remaining
nodes in the queue with a priority equal or higher than that of the goal since those nodes cannot
possibly lead to a better path
Lifelong planning A* (LPA) can reuse results from previous A runs when only a few edge costs have
changed
— All cells that have an incoming edge cost change are checked for inconsistency, by recomputing the
cost-to-come based on predecessor’s values
— This progresses outwards until all cells have consistent costs, and the search is restarted using this
information
Focused Dynamic A* (or D) is an improved version of LPA that replans while moving towards the
goal, making them even more efficient than A*



	Lecture 8, Jan 19, 2026
	Optimal Graph-Based Planning


