Lecture 5, Jan 12, 2026
Vehicle Models
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Figure 1: Differential drive robot.

o Consider the unicycle model kinematics we derived previously for differential drive (note we redefine b
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to be half the distance between wheels) [w} =3 L/Qb —r/Qb} Lﬁl}
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— Define the inertial frame configuration g = |y
0

— To handle the nonholonomic constraint, consider ¢ in the vehicle frame, since we are constrained
to have u =0

T cos) —sinf Of |v
*q=|y| = [sinf cos® 0] |0
0 0 0 1| |w

cosf O r2 /2] o
— The overall kinematics in inertial frame is ¢ = 5189 (1J [r/?b T/2b] Lﬁl] =G(q)p
e Generally we can write the nonholonomic constraints in matrix form as H (q)Tq = 0, so the admissible
velocities consists of the null space of H(q)”
— Let the generalized velocity p, then the null space of H(q)" is ¢ = G(q)p where H(q)"G(q) = 0
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— For the unicycle model, G(q) = |sinf 0
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e To model the vehicle dynamics as well, we usually use Euler-Lagrange: % (8(]) — W +7+H(g)\

where the H(g)A models nonholonomic constraints, with A being the Lagrange multipliers
— The generalized forces can be expressed as 7 = G(q)v so that the nonholonomic constraints are
satisfied
e For the unicycle model:
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— The Lagrange multiplier in this case represents the constraint forces arising from the vehicle

kinematics (i.e. force from the wheel no-slip constraints), but we don’t know this force so we try
to eliminate it
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— To eliminate the unknown Lagrange multiplier, premultiply the EL equation by G(q)T:
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* Note in this case G(q)T G(¢) = 1, but this is not true in general

— Recall the generalized velocity is p = Z: — p= #cost Tysin 9]
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— Therefore [O I] [w] =v < Mp=v
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The complete model is {p] = {0 _M-D| |p + 1| uw

* This uses a damped model for forces v = —Dp + u where u = [‘ﬂ , [ is some longitudinal

thrust and ¢ is some steering torque
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Figure 2: Bicycle model derivation.

e For the bicycle model:
T

— Define state :g , generalized velocity p = [ﬂ (where ¢ is the steering velocity)

~y
— Form the nonholonomic constraints by taking lateral slip constraints from the wheel model for
o cosf 0
y' sin 6 0 v
both wheels, and find the nullspace of H(q)” to get il = tan y 0 [J — ¢=G(q)p
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— Form the Lagrangian: L = i(mr +myp) (@ + %) + 5(17« +myd®)6? + §If(9 +4)?
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= §m(:b2 +9°) + 5192 + 51 (0 + )2
* Note this comes from the kinetic energy of the forward and rear wheels combined
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* Note T is somewhat arbitrary here; the matrix F(q) is not necessarily related to G(q), and
instead is just based on what we choose
— Premultiply by G(q)? to eliminate the Lagrange multiplier again to get p = M (q) ™ (—(G(q)T M G(q)+
D)p+u) = M(q)"'(~D(q,p)p + u)
* Note M(q) = G(q)" MG(q)
* We again used damped forces v = —Dp +u
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models can be written as a nonlinear differential equation & = A(x)x + B(x)u where = {;]7]

consisting of the configuration (pose, etc) and generalized velocity
— If we ignore dynamics, then A =0
 Additional constraints can be added to the model to limit { #, u } to an allowed set Sajiowed, €-8. turning

rates or obstacles
— These constraints are in general non-convex and makes optimization much harder

» Example: imposing a curvature constraint on the unicycle model
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— Define the curvature k = — = fu and radius of curvature R = —
v b+ ) ||
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— A max curvature constraint would impose |—| = k| < kmax =
v Rmin
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