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Vehicle Models

Figure 1: Differential drive robot.

• Consider the unicycle model kinematics we derived previously for differential drive (note we redefine b

to be half the distance between wheels)
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– Define the inertial frame configuration q =
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– To handle the nonholonomic constraint, consider q̇ in the vehicle frame, since we are constrained

to have u = 0
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– The overall kinematics in inertial frame is q̇ =
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• Generally we can write the nonholonomic constraints in matrix form as H(q)T q̇ = 0, so the admissible
velocities consists of the null space of H(q)T

– Let the generalized velocity p, then the null space of H(q)T is q̇ = G(q)p where H(q)T G(q) = 0

– For the unicycle model, G(q) =

cos θ 0
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• To model the vehicle dynamics as well, we usually use Euler-Lagrange: d

dt
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where the H(q)λ models nonholonomic constraints, with λ being the Lagrange multipliers
– The generalized forces can be expressed as τ = G(q)ν so that the nonholonomic constraints are

satisfied
• For the unicycle model:

– T = 1
2m(ẋ2 + ẏ2) + 1

2Iθ̇2, V = 0
– The Lagrange multiplier in this case represents the constraint forces arising from the vehicle

kinematics (i.e. force from the wheel no-slip constraints), but we don’t know this force so we try
to eliminate it
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– To eliminate the unknown Lagrange multiplier, premultiply the EL equation by G(q)T :

* G(q)T d
dt
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* Note in this case G(q)T G(q) = 1, but this is not true in general

– Recall the generalized velocity is p =
[
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=⇒ ṗ =

[
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– Therefore
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– The complete model is
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* This uses a damped model for forces ν = −Dp + u where u =
[
f
g

]
, f is some longitudinal

thrust and g is some steering torque

Figure 2: Bicycle model derivation.

• For the bicycle model:

– Define state
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, generalized velocity p =
[
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]
(where ς is the steering velocity)

– Form the nonholonomic constraints by taking lateral slip constraints from the wheel model for

both wheels, and find the nullspace of H(q)T to get
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⇐⇒ q̇ = G(q)p

– Form the Lagrangian: L = 1
2(mr + mf )(ẋ2 + ẏ2) + 1

2(Ir + mf d2)θ̇2 + 1
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* Note this comes from the kinetic energy of the forward and rear wheels combined

– Now we have d
dt

(
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)
=


mẍ
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 ν = F (q)ν
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* M =


m 0 0 0
0 m 0 0
0 0 I + If If

0 0 If If
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* Note τ is somewhat arbitrary here; the matrix F (q) is not necessarily related to G(q), and

instead is just based on what we choose
– Premultiply by G(q)T to eliminate the Lagrange multiplier again to get ṗ = M(q)−1(−(G(q)T MĠ(q)+

D)p + u) = M(q)−1(−D(q, p)p + u)
* Note M(q) = G(q)T MG(q)
* We again used damped forces ν = −Dp + u

– Complete system model:
[
q̇
ṗ

]
=

[
0 G(q)
0 −M(q)−1D(q, p)

] [
q
p

]
+

[
0
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]
u In general all vehicle

models can be written as a nonlinear differential equation ẋ = A(x)x + B(x)u where x =
[
q
p

]
consisting of the configuration (pose, etc) and generalized velocity

– If we ignore dynamics, then A = 0
• Additional constraints can be added to the model to limit { x, u } to an allowed set Sallowed, e.g. turning

rates or obstacles
– These constraints are in general non-convex and makes optimization much harder

• Example: imposing a curvature constraint on the unicycle model
– Define the curvature k = ω

v
= 1

b

φ̇r − φ̇l

φ̇r + φ̇l
and radius of curvature R = 1

|k|
– A max curvature constraint would impose |ω

v
| = |k| ≤ kmax = 1

Rmin
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