

Lecture 4, Jan 12, 2026

Wheel Differential Kinematics

- For the standard wheel, we assume rolling without slipping, so $v_x = \dot{\varphi}r$ and $v_y, v_z = 0$

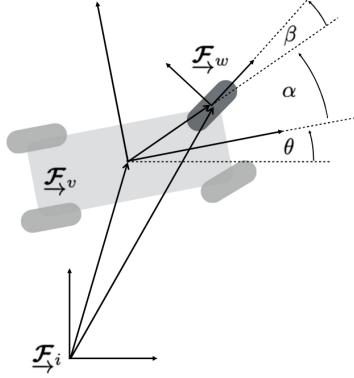


Figure 1: Derivation of the standard wheel model.

- Consider a vehicle with heading θ , with a wheel at angle α and distance $\|r^{wv}\| = d$ relative to vehicle frame, with steering angle β
 - $\underline{r}^{wi} = \underline{r}^{vi} + \underline{r}^{wv} \implies \underline{v}_w^{wi} = \underline{v}_w^{vi} + \omega_w^{vi} \times \underline{r}_w^{wv}$ in the wheel frame
 - This becomes $\begin{bmatrix} \dot{\varphi}r \\ 0 \\ 0 \end{bmatrix} = \mathbf{C}_3(\alpha + \beta) \underline{v}_v^{vi} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix} \times \begin{bmatrix} d \cos \beta \\ -d \sin \beta \\ 0 \end{bmatrix}$
 - Simplify: $\begin{bmatrix} \dot{\varphi}r \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) & 0 \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \underline{v}_v^{vi} + \begin{bmatrix} d \sin \beta \\ d \cos \beta \\ 0 \end{bmatrix} \dot{\theta}$
 - * The 3 equations express the rolling without sliding, no sideways sliding, and contact with ground constraints
 - Let $\dot{\underline{q}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$ be the pose rate in inertial frame, so in vehicle frame $\dot{\underline{\xi}} = \begin{bmatrix} v \\ u \\ \omega \end{bmatrix} = \mathbf{C}_3(\theta) \dot{\underline{q}}$ (where $\omega = \dot{\theta}$)
 - * $[\cos(\alpha + \beta) \ \sin(\alpha + \beta) \ d \sin \beta] \dot{\underline{\xi}} = \dot{\varphi}r$
 - * $[-\sin(\alpha + \beta) \ \cos(\alpha + \beta) \ d \cos \beta] \dot{\underline{\xi}} = 0$
- Example: differential drive model
 - $\begin{bmatrix} \cos(\alpha_r + \beta_r) & \sin(\alpha_r + \beta_r) & d_r \sin \beta_r \\ \cos(\alpha_l + \beta_l) & \sin(\alpha_l + \beta_l) & d_l \sin \beta_l \\ -\sin(\alpha_r + \beta_r) & \cos(\alpha_r + \beta_r) & d_r \cos \beta_r \\ -\sin(\alpha_l + \beta_l) & \cos(\alpha_l + \beta_l) & d_l \cos \beta_l \end{bmatrix} \begin{bmatrix} v \\ u \\ \omega \end{bmatrix} = \begin{bmatrix} \dot{\varphi}_r r \\ \dot{\varphi}_l r \\ 0 \\ 0 \end{bmatrix}$
 - Substituting and simplifying: $\begin{bmatrix} 1 & 0 & b \\ 1 & 0 & -b \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ u \\ \omega \end{bmatrix} = \begin{bmatrix} \dot{\varphi}_r r \\ \dot{\varphi}_l r \\ 0 \\ 0 \end{bmatrix}$
 - * These are known as the *differential kinematics* of the robot, relating the body-centric velocity to the wheel speeds
 - * e.g. If $\dot{\varphi}_r = \dot{\varphi}_l$, we get $\omega = 0$ which intuitively makes sense
 - Solving for wheel rates gives us *inverse differential kinematics*: $\begin{bmatrix} \dot{\varphi}_r \\ \dot{\varphi}_l \end{bmatrix} = \frac{1}{r} \begin{bmatrix} 1 & b \\ 1 & -b \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$

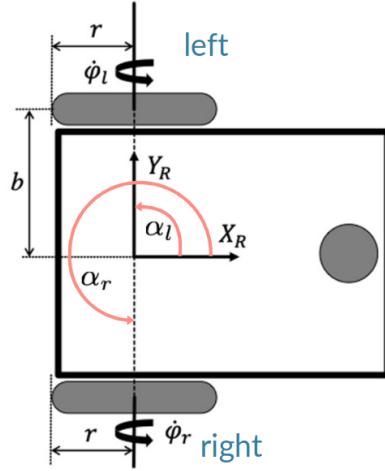


Figure 2: Differential drive robot model.

- Solving for vehicle speed gives us *forward differential kinematics*: $\begin{bmatrix} v \\ \omega \end{bmatrix} = \frac{1}{2} \begin{bmatrix} r & r \\ r/b & -r/b \end{bmatrix} \begin{bmatrix} \dot{\phi}_r \\ \dot{\phi}_l \end{bmatrix}$

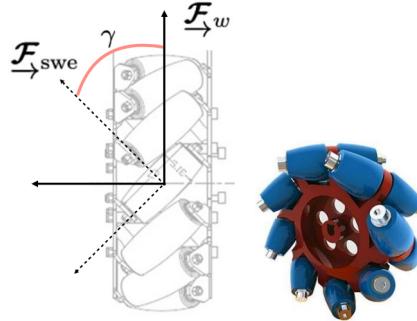


Figure 3: Swedish wheel.

- Swedish wheels (or Mecanum wheels) have rollers on the wheel which allows for sideways motion at an angle γ
 - Following the same derivation gives us the following set of constraints:
 - * $[\cos(\alpha + \beta + \gamma) \quad \sin(\alpha + \beta + \gamma) \quad d \sin(\beta + \gamma)] \dot{\xi} = \dot{\varphi}r \cos \gamma + \dot{\varphi}_s r_s$
 - * $[-\sin(\alpha + \beta + \gamma) \quad \cos(\alpha + \beta + \gamma) \quad d \cos(\beta + \gamma)] \dot{\xi} = -\dot{\varphi}r \sin \gamma$
 - * Note we can recover the standard wheel model by simply setting $\dot{\varphi}_s = 0$
 - Note since the small wheels are passive, $\dot{\varphi}_s$ can be anything, so the first equation does not constrain the motion and just acts as another degree of freedom, i.e. we usually only have the lateral constraint

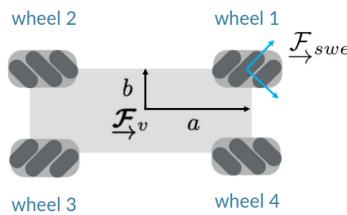


Figure 4: Swedish wheel vehicle.

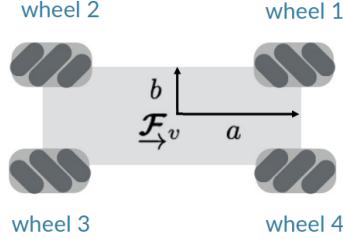


Figure 5: Swedish wheel configuration without degeneracy (bottom-up view).

- Example: vehicle with 4 Swedish wheels

– Using the first configuration and expanding the lateral constraints (since the rollers are unconstrained):

$$* \begin{bmatrix} 1 & 1 & -(b-a) \\ 1 & -1 & -(b-a) \\ 1 & 1 & b-a \\ 1 & -1 & b-a \end{bmatrix} \begin{bmatrix} v \\ u \\ \omega \end{bmatrix} = \begin{bmatrix} \dot{\phi}_1 r \\ \dot{\phi}_2 r \\ \dot{\phi}_3 r \\ \dot{\phi}_4 r \end{bmatrix}$$

* Notice that in the case of $a = b$, the last column is cleared out and we no longer have control over ω ; intuitively this is because when the wheels are symmetric about the centre, the vehicle can be rotated freely regardless of wheel rotation

– Using the second configuration we can avoid the degeneracy:

$$* \begin{bmatrix} \dot{\phi}_1 \\ \dot{\phi}_2 \\ \dot{\phi}_3 \\ \dot{\phi}_4 \end{bmatrix} = \frac{1}{r} \begin{bmatrix} 1 & -1 & -(a+b) \\ 1 & 1 & -(a+b) \\ 1 & -1 & (a+b) \\ 1 & 1 & (a+b) \end{bmatrix} \begin{bmatrix} v \\ u \\ \omega \end{bmatrix}$$

– Since we can individually control all 4 wheels but the vehicle only has 3 degrees of freedom, the forward kinematics are not unique; we can use the pseudoinverse to recover the forward model:

$$* \begin{bmatrix} v \\ u \\ \omega \end{bmatrix} = \frac{r}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ \frac{1}{a+b} & -\frac{1}{a+b} & \frac{1}{a+b} & \frac{1}{a+b} \end{bmatrix} \begin{bmatrix} \dot{\phi}_1 \\ \dot{\phi}_2 \\ \dot{\phi}_3 \\ \dot{\phi}_4 \end{bmatrix}$$