

Lecture 3, Jan 7, 2026

Mathematical Background

- There is no representation of rotations that has exactly 3 parameters (and therefore no constraints) and is also free of singularities
- Rotation representations include axis-angle (4 parameters including a unit length \mathbf{a} and angle ϕ), quaternions (4 parameters subject to unit length), and Gibbs vector $\mathbf{g} = \mathbf{a} \tan \frac{\phi}{2}$ (3 parameters but singularity at $\phi = \pi$)
 - $\varepsilon = \mathbf{a} \sin \frac{\phi}{2}, \eta = \cos \frac{\phi}{2}$ to convert between axis angle and quaternions
- For small perturbations, we have approximately $\mathbf{C} = 1 - \boldsymbol{\theta}^\times$ where $\boldsymbol{\theta} = \phi \mathbf{a}$
 - In this case the product of the principal rotations (Euler angles) is approximately their sum
 - This is used a lot in optimization
- Time derivatives of vectors seen in different frames is related as $\dot{\underline{r}} = \dot{\underline{r}}^\circ + \omega_{21} \times \underline{r} \iff \dot{\mathbf{r}}_1$
 - In terms of coordinates, $\mathbf{C}_{12}(\dot{\mathbf{r}}_2 + \omega_2^{21} \times \mathbf{r}_2)$
 - We often have \underline{r} denoting some position, \mathcal{F}_1 being an inertial frame and \mathcal{F}_2 being a moving frame (e.g. vehicle frame)
- We can show that the rotation matrix obeys Poisson's equation: $\dot{\mathbf{C}}_{21} = -\omega_2^{21} \times \mathbf{C}_{21}$
 - This means we can obtain the rotation matrix in a navigation scenario by integrating the equation, with $\boldsymbol{\omega}$ obtained from a sensor attached to the vehicle
- Consider a point P , which is \underline{r}_i^{pi} in frame i and \underline{r}_v^{pv} in frame v ; given the pose of frame v , $\{\mathbf{r}_i^{vi}, \mathbf{C}_{iv}\}$, the vectors can be related as $\underline{r}_i^{pi} = \mathbf{C}_{iv} \underline{r}_v^{pv} + \underline{r}_i^{vi}$
 - \underline{r}_a^{bc} denotes the coordinates of the vector from c to b , expressed in frame a
 - Notice that the indices of the translation \underline{r}_i^{vi} look reversed, since we need to add the coordinates of frame v relative to frame i to get from v to i
- As a homogeneous transformation, $\begin{bmatrix} \underline{r}_i^{pi} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{iv} & \underline{r}_i^{vi} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \underline{r}_v^{pv} \\ 1 \end{bmatrix} = \mathbf{T}_{iv} \begin{bmatrix} \underline{r}_v^{pv} \\ 1 \end{bmatrix}$
 - Note $\mathbf{T}_{iv}^{-1} = \begin{bmatrix} \mathbf{C}_{iv} & \underline{r}_i^{vi} \\ \mathbf{0}^T & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{C}_{iv}^T & -\mathbf{C}_{iv}^T \underline{r}_i^{vi} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{vi} & -\underline{r}_v^{vi} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{vi} & \underline{r}_v^{iv} \\ \mathbf{0}^T & 1 \end{bmatrix} = \mathbf{T}_{vi}$
- The generalization of angular velocity for poses is $\boldsymbol{\omega}_v^{vi} = \begin{bmatrix} \boldsymbol{\nu}_v^{vi} \\ \boldsymbol{\omega}_v^{vi} \end{bmatrix}$, consisting of the linear and angular velocities
 - $\dot{\mathbf{T}}_{vi} = \begin{bmatrix} \boldsymbol{\omega}_v^{vi} \times & -\boldsymbol{\nu}_v^{vi} \\ \mathbf{0}^T & 0 \end{bmatrix} \mathbf{T}_{vi}$

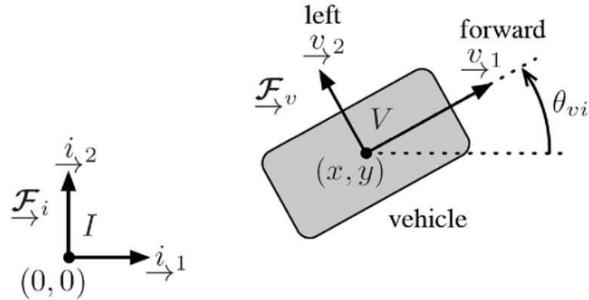


Figure 1: Illustration of the unicycle model.

- Example: we can derive the unicycle model by considering a 2D robot with position (x, y) and angle θ_{vi} , where axis z comes out of the plane

$$- \mathbf{r}_i^{vi} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}, \mathbf{C}_{vi} = \mathbf{C}_3(\theta_{vi}) = \begin{bmatrix} \cos \theta_{vi} & \sin \theta_{vi} \\ 0 & -\sin \theta_{vi} \end{bmatrix} \cos \theta_{vi} 0001$$

* Note the notation for elementary rotations is different; $\mathbf{C}_3(\theta)$ does not denote a rotational transformation by θ , rather it denotes the transformation from the current frame to a frame obtained by rotating by θ , so the formula for the rotation matrices is transposed compared to the usual ones

$$- \text{For the pose we want } \mathbf{T}_{iv} = \begin{bmatrix} \mathbf{C}_{iv} & \mathbf{r}_i^{vi} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{vi} & -\sin \theta_{vi} & 0 & x \\ \sin \theta_{vi} & \cos \theta_{vi} & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

* Note this is not \mathbf{T}_{vi} , so we use \mathbf{C}_{iv} and not \mathbf{C}_{vi} !

* Usually the third row and column is omitted for 2D

- For kinematics we constrain $\boldsymbol{\omega}_v^{vi} = [v \ 0 \ 0 \ 0 \ 0 \ \omega]^T$, i.e. only forward movement and rotation along z

$$- \text{Using the relation between } \dot{\mathbf{T}}_{iv} \text{ and } \boldsymbol{\omega}_v^{vi} \text{ we get } \begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = \omega \end{cases}$$