
Lecture 1, Jan 6, 2026
Discrete-Time Systems

• Some physical phenomena is best captured with discrete-time dynamics rather than continuous time,
e.g. the human saccadic system (where the eye moves around rapidly to sample different objects)

• (LTI) Discrete processes can be modelled in 3 ways:
– State models: x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
where:

* k is a discrete sample time, which is not necessarily evenly spaced
* x(k) is the state
* u(k) is the input
* y(k) is the output

– Difference equations: y(k) + a1y(k − 1) + · · · + any(k − n) = b0u(k) + b1u(k − 1) + · · · + bmu(k − m)
* Written in terms of the input, output, and delayed values (as opposed to always a single shift

in k as in the state model)
* The difference equation is to the state-space model the same way that an ODE is to a

continuous time state-space model
– Transfer functions: Y (z)

U(z) where Y (z), U(z) are the Z-transformed versions of the output and input

* Analogous to continuous time transfer functions, except using Z-transforms instead of Laplace
transforms

• Example: modelling the saccade process: let the state x(k) ∈ R be the change in eye angle at the end
of the saccade, the error e(k) = r(k) − x(k) representing the difference between the desired change in
eye angle and the actual eye angle

– How does the brain ensure that the saccade is always correct, despite various disturbances to the
system (e.g. glasses)?

– Augment the error with a disturbance d(k), such that e(k) = r(k) + d(k) − x(k)
– Consider a simple plant model x(k + 1) = u(k), which is in the form of a state model

* The TF is zX(z) = U(z) =⇒ X(z)
U(z) = 1

z
• For Z-transforms, a shift x(k) → x(k + 1) becomes a multiply, X(z) → zX(z), analogous

to how differentiation becomes multiplication for Laplace transforms
* The difference equation is obtained by simply shifting back, x(k) = u(k − 1)

• In this case the difference between state model and difference equation is trivial, but in
higher dimension systems the difference equation becomes higher order

– Derive the error model, e(k + 1) = r(k + 1) + d(k + 1) − x(k + 1)
= r̄ + d̄ − x(k + 1)
= r̄ + d̄ − u(k)

* We assume r(k) = r(k + 1) = r̄ is a constant target, and d(k) = d(k + 1) = d̄ is a constant
disturbance

* To get the error model, we keep forward shifting the dynamics until the input u(k) appears
* We only needed to forward shift once, so this is a first-order model

– Consider a controller u(k) = us(k) + um(k) where um is the internal model, which handles the
steady state behaviour, and us gives us good transient behaviour

– Choose us(k) = Ke(k) for some gain K, so e(k + 1) = −Ke(k) − um(k) + d̄ + r̄
* Suppose um(k) = 0; is this stable?

• For a system in canonical form x(k + 1) = Ax(k), the system is asymptotically stable if
and only if the eigenvalues of A are inside the unit circle, so in this case the undriven
system is stable if |K| < 1

• To find the steady state (we know it exists in this case), set ess = e(k) = e(k + 1) =⇒
ess = 1

1 + K
(d̄ + r̄)

• Notice that the higher the gain, the smaller our steady state error, but we can never
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eliminate the steady state error if um(k) = 0 since we can only set K to be so high before
the system becomes unstable

– We add an internal model ŵ(k + 1) = ŵ(k) + Ge(k) and ui(k) = ϕŵ(k), and we can show that the
resulting closed-loop system is asymptotically stable

Note

The failure of the controller with um(k) = 0 is an example of the Internal Model Principle, which
intuitively states that "any good regulator must create an internal model of the dynamic structure
of the environment in the closed loop system," i.e. the controller must incorporate a model of the
exosystem, which is capable of producing any disturbance frequencies that could enter the system.
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