Lecture 1, Jan 6, 2026

Discrete-Time Systems

e Some physical phenomena is best captured with discrete-time dynamics rather than continuous time,
e.g. the human saccadic system (where the eye moves around rapidly to sample different objects)
o (LTI) Discrete processes can be modelled in 3 ways:
— State models: z(k + 1) = Az(k) + Bu(k) where:
y(k) = Cx(k) + Du(k)
k is a discrete sample time, which is not necessarily evenly spaced
x(k) is the state
u(k) is the input
y(k) is the output
— Difference equations: y(k)+ajy(k—1)+---+any(k —n) = bou(k) + byu(k— 1)+ -+ bu(k —m)
* Written in terms of the input, output, and delayed values (as opposed to always a single shift
in k as in the state model)
* The difference equation is to the state-space model the same way that an ODE is to a
continuous time state-space model
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— Transfer functions: UE ; where Y (z), U(z) are the Z-transformed versions of the output and input
z

* Analogous to continuous time transfer functions, except using Z-transforms instead of Laplace

transforms
o Example: modelling the saccade process: let the state 2(k) € R be the change in eye angle at the end
of the saccade, the error e(k) = r(k) — z(k) representing the difference between the desired change in
eye angle and the actual eye angle
— How does the brain ensure that the saccade is always correct, despite various disturbances to the
system (e.g. glasses)?
Augment the error with a disturbance d(k), such that e(k) = r(k) + d(k) — z(k)

— Consider a simple plant model z(k + 1) = u(k), which is in the form of a state model
" ) B X(z) 1
The TF is 2X (2) = U(z) = ORE
o For Z-transforms, a shift (k) — x(k + 1) becomes a multiply, X (z) — 2X(z), analogous
to how differentiation becomes multiplication for Laplace transforms
* The difference equation is obtained by simply shifting back, z(k) = u(k — 1)
o In this case the difference between state model and difference equation is trivial, but in
higher dimension systems the difference equation becomes higher order

— Derive the error model, e(k+ 1) =r(k+1)+d(k+1) —z(k+1)

=r+d—z(k+1)
=7+d—u(k)
* We assume r(k) = r(k 4+ 1) = 7 is a constant target, and d(k) = d(k 4+ 1) = d is a constant

disturbance
* To get the error model, we keep forward shifting the dynamics until the input u(k) appears
* We only needed to forward shift once, so this is a first-order model
— Consider a controller u(k) = us(k) + un, (k) where wu,, is the internal model, which handles the
steady state behaviour, and ugs gives us good transient behaviour
Choose u (k) = Ke(k) for some gain K, so e(k +1) = —Ke(k) — tp (k) + d+ 7
* Suppose u,, (k) = 0; is this stable?
o For a system in canonical form z(k 4+ 1) = Axz(k), the system is asymptotically stable if
and only if the eigenvalues of A are inside the unit circle, so in this case the undriven
system is stable if |K| < 1
e To find t{le steady state (we know it exists in this case), set ess = e(k) =e(k+1) =
€ss = W(d +7)
e Notice that the higher the gain, the smaller our steady state error, but we can never



eliminate the steady state error if u,,(k) = 0 since we can only set K to be so high before
the system becomes unstable
— We add an internal model w(k + 1) = @(k) + Ge(k) and u; (k) = ¢w(k), and we can show that the
resulting closed-loop system is asymptotically stable

The failure of the controller with u,,(k) = 0 is an example of the Internal Model Principle, which
intuitively states that "any good regulator must create an internal model of the dynamic structure
of the environment in the closed loop system," i.e. the controller must incorporate a model of the
exosystem, which is capable of producing any disturbance frequencies that could enter the system.
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Modelling of Discrete-Time Systems

e LTI systems can be modelled in 3 ways:
1. Difference equations (DEs) of the form y(k)+ai1y(k—1)+- - -+an,y(k—n) = bou(k)+- - -+ b, u(k—m)
— Note we assume that n > m, which is required for causality (otherwise inputs in the future
can affect outputs in the past)
— This is analogous to ODEs in continuous domain

2. Transfer functions (TFs): G(z) =

(2) . o iy
, assuming zero initial conditions
U(z)
— They are analogous to transfer functions in continuous time but using a Z-transform instead of
the Laplace transform; we also have the ratio of the Z-transform of the output over the input

Y(2) bo+biz7 4 4 bpz™  bpz" +b12" 4 4 by 2" N(2)

U(z) 14az7t4+--+ anz—” ozt taz e tan 1z +ta,  D(2)

3. State-space models: m(k + 1) Az(k) + Bu(k ) (canonical form)
C’x( —|— Du
a1 (k) y1(k)
—xz(k)y=1 --- eR™ yk)=| --- | eRP
n (k) yp(F)

The Z-transform of a discrete time signal z(k) is defined as

Z{x(k) Zw

k=0

for some z € C, provided that the sum is convergent.

o Note the forward and backward shift properties of the Z-transform: z(k 4+ m) transforms to 2" X (2)
(for positive or negative m), assuming zero initial conditions
— Therefore Z-transforming the difference equation we get Y(2) + a1z 'Y (2) +--- 4+ anz "V (2) =
boU(z) + -+ + bz~ ™U(z), which we can rearrange to get the expression earlier
— Just like how the Laplace transform converts differentiations to multiplication, the Z-transform
converts time shifts to multiplication, turning a difference equation into algebra

Conversion Between State Space and Transfer Function Representations

e To convert from state space to transfer function, take the Z-transform of the state and output equations,
and solve for X (z) and Y (z)
~ 2(k+1) = Az(k) + Bu(k) = 2X(2) = AX(2)+ BU(z) = X(2) = (21 — A)"'BU(2)



* Note (zI — A)~! exists since its form means it can be written as a convergent power series, so
it can always be inverted
— y(k) = Cx(k) + Du(k) = Y(2) =CX(2)+ DU(2)
= C(zI — A)T'BU(2) + DU(2)
= (C(zI — A~ 'B+D)U(2)
Y(2) -1
=C(zI-A)~""B+D
UG (2 ) +
— Note that we normally only do this for SISO systems (taking the ratio of vectors would not make
sense anyway) since transfer functions are generally very hard to work with for MIMO systems
N(z)
D(z)
function, start by converting to a difference equation by inverting the Z-transform, define as many
states as necessary (equal to the order of the difference equation) and organize into matrix form

Example: G(z) =

— This gives the transfer function G(z) =

o To convert from transfer function to state space, assume G(z) = is a rational proper transfer

224+ a1z + ao
— Convert to difference equation: (2> 4+ a1z +ao)Y(2) = U(z)

= y(k+2) + ary(k + 1) + azy(k) = u(k)
zi(k+1) =yk+1) = z2(k)
zo(k+1) =y(k+2) =u(k) — arz2(k) — a1 (k)

Define states: z1(k) = y(k), z2(k) = y(k+1) =

0 1 0
—z(k+1)= o —a1] x(k) + L] u(k)
— This is known as the controllable canonical form (analogous to the same in continuous domain)
N
o More generally when the numerator is not a constant, rewrite Y (z) = DEZZU (2) = N(2)V(z) where
z
1
V(z) = mU(z), and V (z) becomes the state, Y (z) = N(z)V (z) becomes the output equation, and
z
Vi(z) = WU(Z) becomes the state equation
b1z + by N(Z)

- G(z) = = =

(2) 2+ a2 +a1z4+a9  D(2)

. 1
— State equation: V(z) = R Er——
= v(k+3) +axv(k+2)+arv(k + 1) + apv(k) = u(k)
v(k) 2 (k)
* Define states z(k) = [v(k+1)| = =z(k+1) = x3(k)
v(k+2) —asx3(k) —a1z2(k) — apz1(k) + u
0 1 0 0
* Matrix form: z(k+1)=1] 0 0 1 [ x(k)+ [0] u(k)
—ag —a; —az 1

— Output equation: Y(2) = (bhiz +bo)V(2)

= y(k) =biv(k 4+ 1) + bov(k)
= bll‘g(k‘) + boxl(k])
o Note that the states obtained by converting from transfer function to state space are not unique

— Some states are easier to work with than others, so we might want to do a coordinate transform
2(k) = Px(k) for some nonsingular P to obtain a new system z(k +1) = PAP z(k) + P"'*BU (k)
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Time Response

o Given a state space model z(k + 1) = Az(k) + Bu(k),y(k) = Cx(k) + Du(k), an initial condition z(0)
and input at all times { u(k) },~,, we want to obtain an explicit formula for z(k),y(k), for k > 0
e As with continuous systems, since the system is LTT we can again break the total response into a
superposition of the initial state response (nonzero initial conditions with zero input) and input response
(zero initial conditions with nonzero input)
— Initial state response: z(k + 1) = Az(k) = z(k) = A*z(0)
* This is an explicit formula because A¥ can always be computed non-iteratively as we will see

later
* A* is the discrete time analogue of e in continuous time
— Input response: x(k+1) = Az(k) + Bu(k),z(0) =0

— (k) = Bu(k — 1) + ABu(k — 2) + A?Bu(k — 3) + - -- + A" Bu(0)

k—1
= A*Bu(i)
=0

* This is the discrete time analogue of a convolution
k-1

o The total response is (k) = A*z(0) + Z A1 By (4)
=0
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Computing the Matrix Power

e Given A € R™", we want to find a closed-form expression for A* so we can compute the time response
o Let 0(A) ={A1,..., M\ }, A € C denote the spectrum of A, i.e. the set of eigenvalues of A
o Assume that A is diagonalizable (recall that this is equivalent to A having n linearly independent
eigenvectors), then we can compute A* as A¥ = PA¥P~1 where P is the matrix of eigenvectors which
diagonalizes A
— In general for nondiagonalizable A this will be replaced with the Jordan form
0 1
e Example: A = [3 _2]
— This has characteristic polynomial s* 4+ 2s —3 = (s +3)(s — 1) so 0(A) = {1,-3}

. . 0 1 V11| _ V11 . _ 1 o 1
— Substitute A in [3 2} L’U} = [022] and solve for eigenvectors to get v; = [J , Vg = [3]

T e T | O

« Note that A* can also be computed using the Z-transform (similarly to how e
the Laplace transform)
— Starting with z(k + 1) = Az(k), which we know the solution to be z(k) = A*z(0)
— Apply Z-transforms to get 2X(z) — z2(0) = AX (2)
— X(2) = (2I — A)"'22(0)
= x(k) = Z7" {(zI — A)"'2} 2(0)
* Note we don’t assume zero initial conditions here since we’re not trying to derive a transfer
function
~ By existence and uniqueness of solutions, we conclude that A* = Z7! {(2I — A)~ 'z} z(0)
* Note that this inverse Z-transform can be computed componentwise using the residue theorem
(not covered in this course)

At can be computed with



Poles and Eigenvalues

e The qualitative behaviour of solutions can be inferred by looking at either the eigenvalues of A or the
poles of the transfer function

e What is the relationship between poles and eigenvalues of A7

Y(z)

(2)

o Counsider the output equation y(k) = Cx(k) with transfer function (SISO) =C(zI —A)'Bas

-

we’ve derived last time

adj(zI — A) B N'(z)
det(z] — A)) - D'(2)
* Note that the middle term is a scalar, so we can conclude that D’(z) is the characteristic
polynomial of A
— To get an actual transfer function we need to cancel roots so that the numerator and denominator

e to sot L2
are coprime, to ge D)
— This means that all the poles (roots of D(z)) are eigenvalues of A, but not the other way around
due to pole-zero cancellations — some information is lost when we convert from state space to
transfer function

* A system that has a stable transfer function might not necessarily be stable in all its states

— Expanding the inverse we get C' <

Lecture 5

Qualitative Behaviour of Solutions
k—1 '
« Consider a system x(k + 1) = Az (k) + Bu(k) with response z(k) = A*z(0) + Z A1 Bu(i); what
i=0
can we conclude qualitatively about the solution without explicitly computing it?
o« Let the system have output y(k) = Cuz(k) and transfer function G(z) = C(zI — A)™'B =
pFma)z—a)- -
(z=p1)(z —p2) -
o To get Y (k) we use partial fractions as with Laplace transforms, yielding

C2

+
Z—P1 Z—Pp2

e What is the behaviour of a typical pole?
z

k
z—p -P
— Clearly, if p =1 then we get a constant response, or if p = —1 we get an alternating response that
has constant magnitude
— For p € (0,1) we get a decaying envelope that does not change sign; with the decay faster the
closer p is to zero
— For p = 0 we get a constant zero (but we need to watch out since now we have z/z)
— For p € (—1,0) we get a decaying envelope with alternating signs, again with decay faster the
closer p is to zero
— In summary:
* p < 0 — solution alternates signs
* |p| < 1 — solution decays
* |p| > 1 — solution blows up
* p =41 — steady-state response

« For real distinct poles, Z~*

22

1, .
(z —red¥)(z — re=iv) } ~ Sinw' sin(kw + ¢)
— This contains a constant factor, an exponential envelope ¥ and an oscillation at frequency w
— Larger values of r decay slower, until » = 1 which is a steady-state oscillation, then for r > 1 the
solution blows up
— The frequency of oscillation gets faster with increasing w, as we increase the angle of the pole
* However since the angles live on a circle, if we have w > 7 (i.e. flipping beyond the negative

« For complex conjugate poles, Z~*



real line), the effect is the same as reducing the frequency
* This is because w = 7 represents the Nyquist frequency, and any higher frequency contents
will be aliased into lower frequencies in the output, so we have a fundamental limit based on
the sampling rate
— In summary:
* Poles on the same circle have the same exponential envelope
* Poles with the same angle have the same oscillation frequency
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Stability of Discrete-Time Systems

 Consider a general open-loop nonlinear system z(k + 1) = f/(z(k),u(k)) and its closed-loop system,
x(k+1) = f(k,x(k)), where u no longer appears since we have designed some control law
— Note that since we have k appearing explicitly in f, our systems are not time-invariant; this is
necessary when we talk about adaptive control

A constant vector & € R" is an equilibrium of the closed-loop system z(k+1) = f(k,z(k)) if z = f(k, Z).

e Notice that whereas in continuous time the equilibria are points where f is zero, in discrete time
equilibria are fixed points of f
o To make initial conditions explicit, denote z(k) = z(k; ko, o) which means z(kg) = xo

Let z € R™ be an equilibrium of the system z(k + 1) = f(k,z(k)), then
1. & is stable if Yko > 0, > 0,3d(¢, ko) > 0 s.t. |lzo — Z|| < d = ||z (k; ko, z0) — Z|| < &,Vk > ko.
2. 7 is asymptotically stable if it’s stable and 35(ko) > 0 s.t. ||[xo—%| < § = hm x(k; ko, o) =

(attractivity condition).

3. & is uniformly asymptotically stable if it’s asymptotically stable and § in the previous definitions
are independent of k.

4. Zis globally asymptotically stable if it is asymptotically stable (or globally uniformly asymptotically
stable if it is also uniformly asymptotically stable), and §(ko) can be arbitrary large, i.e. all
initial conditions converge to z.

J

e The definition of stability is analogous to the continuous time definition; it requires that for any positive
g, we can find § such that starting within ¢ of the equilibrium guarantees that the solution never goes
outside ¢ of the equilibrium

e Similarly for asymptotic stability, like in the continuous case, we require that solutions near the
equilibrium converge to the equilibrium

o Uniform asymptotic stability is important for reasons of robustness

— Note that this is only an issue for time-dependent systems; for time-invariant systems we never
have this kg dependence, but adaptive control is time-dependent

e In general GUAS is the best outcome
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Lyapunov’s Method

o Note: assume without loss of generality that z = 0 in the definitions below



A continuous function V : R" — R is positive definite at x = 0 if V(0) = 0 and V(z) > 0 for all = # 0.

V is positive semidefinite at x = 0 if V/(0) =0 and V' (x) > 0 for all z, i.e. the function can be zero at
nonzero locations.

e Note that these definitions can be adjusted accordingly if studying a nonzero z equilibrium
e We can similarly define negative definite and negative semidefinite using the same conditions but for
—V(z)

A function & : [0,00) — [0,00) is a class K function if it has the properties:
1. k(0)=0
2. £ is stricty increasing on [0, c0)

3. lim k(s) = o0
Tr—00

A function V : R" — R is radially unbounded if there exists a function & : [0,00) — [0, 00) of class
Koo such that V(k,z) > k(||z||) for all kK >0,z € R™.

o Intuitively, being radially unbounded means that if we go out along any ray from the origin, the function
keeps increasing and never flattens out
— A positive definite function that is not radially unbounded would flatten out along some direction,
i.e. it would have a level set that goes out to infinity
— This is important since Lyapunov’s method works similarly to a gradient descent, so if the function
becomes flat we can “get stuck”
« Note that a more restrictive definition would be V (k,z) > ¢1||z|/?, i.e. a quadratic bound, which works
in the cases we will be examining but not in general
o Let AV denote the change in V along a particular solution of z(k), called the forward difference
— For time-invariant systems, we define AV = AV (z) to be a function of only the state x
* AV (z) = AV(z(k)) = V(x(k +1)) = V(z(k)) = V(f(z)) - V(z)
— For time-varying systems, we define AV = AV (k,z) with a dependence on k as well
— This is the analogue of V in continuous time

Theorem

Main Theorem of Lyapunov: Suppose there exists a positive definite Lyapunov function V : Ng x R™ —
R such that V(k,0) = 0,Vk, and let £ = 0 be an equilibrium, then:
1. If AV (k,z) is negative semi-definite in z, then Z = 0 is stable.
2. If AV (k,z) is negative definite in z, then Z = 0 is asymptotically stable. Moreover if V is
radially unbounded, then z = 0 is globally asymptotically stable.

e Notice that the Lyapunov function is a function of x and k for time-dependent systems, or a function
of just x for time-invariant systems
0.5 0
0 0.5
— Consider the Lyapunov function V(z) = 22 4 z2
* Selecting the appropriate Lyapunov function is the most important part; when in doubt, try a
quadratic
— Clearly V(z) is positive definite at Z = (0,0)

o Example: Consider the system z(k + 1) = [ } z(k); prove that the equilibrium z = [8] is GAS



~ Also, V(x) is radially unbounded (check level sets or use the fact that V(z) > c1||z?
— Compute the forward difference: AV (z) = V(z(k+ 1)) — V(z(k))
a3 (k+1) +a3(k + 1) — 27 (k) — 23(k)
1 1
La(k) + a306) — 23R) — a3(h)
3
= 3a3h) + 230
— AV(k,z(k)) is negative definite, so by Lyapunov’s theorem and the above conditions Z = (0,0) is
GAS
« Example: Consider the nonlinear system z(k + 1) = —z(k) + 2®(k); show that Z = 0 is stable (note
that it is not GAS in this case)
— Counsider the Lyapunov function V(z) = 22, which is clearly positive definite and radially unbounded
— Forward difference: AV (z) = V(x(k +1)) — V(z(k))
=2%(k+1) —2%(k)
= (= (k) + 2°(k))* — 2* (k)
= 2%(k) — 22* (k) + 2°(k) — 22(k)
=—(2—2*(k))z(k)*
— Notice that if |z| < V2 we have a positive AV but once it gets larger the sign flips, so this is only
negative definite within this reduced domain
— Therefore we conclude that if we restrict the domain to { z : || < v/2}, then Z = 0 is asymptotically
stable, but not GAS; outside of this domain, we lose stability
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Exponential Stability

An equilibrium z € R"™ for a system z(k + 1) = f(k, z(k)) is exponentially stable if

3¢, 6 > 0,A € (0,1) s.t. ||x(ko) —Z|| < d = |lz(k) — || < c||z(ko)||N7F0, Yk > ko >0

L J
Theorem

Consider an open set D C R™ with 0 € D; the equilibrium z = 0 is exponentially stable if and only if
there exists V : Ny x D + R and constants c;, ca, c3 > 0 such that ci||z]|? < V(k,z) < caf|z||® and
AV (k,z) < —cs||z|?, Vk <0,z € D.

If D = R", then the equilibrium Z = 0 is globally exponentially stable.

e Note that this is an extension to the Lyapunov theorem we covered last lecture; the conditions here are
stricter than the definiteness and radially unboundedness conditions in the previous theorems



Stability of Linear Time-Invariant Systems

For a linear time-invariant system x(k 4+ 1) = Axz(k), the equilibrium Z = 0 is globally exponentially
stable if and only if |A\] < 1,VA € o(A), i.e. all eigenvalues of A are inside the open unit disk in C.
Such a matrix A is called Schur stable.

The equilibrium z = 0 is stable if and only if |A| < 1,VA € 0(A), and any eigenvalues |A\| = 1 have a
Jordan block of size 1.

Theorem

For z(k + 1) = Axz(k), = = 0 is globally exponentially stable if and only if for each symmetric
positive definite Q € R"*™, there exists a unique symmetric positive definite P € R™*"™ such that
ATPA — P = —Q (the Lyapunov equation).

o The idea is to use a Lyapunov function of V(z) = 2T Pz, which is positive definite if P is positive
definite, and AV (z) = V(Az(k)) — V(z(k))

= (Az(k))" P(Az(k)) — o™ (k) Pz (k)
= 2T (k) AT PAz(k) — 27 (k) Pz (k)
= 2T (k)(ATPA — P)x(k)
= —a" (k)Qux(k)

— This gives us global asymptotic stability if @) is positive definite

— For exponential stability, we make use of the fact that A, (P)|z]|? < 27 Pz < Amax(P)|z||?

where Anin, Amax denote the minimum and maximum eigenvalues
* Note since P is symmetric positive definite it has all real and positive eigenvalues

— This also gives AV (z) = —27 Qx < —Amin(Q)||]|?, so we have all the conditions for exponential
stability
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Feedback Stabilization

o Consider the LTT system x(k + 1) = Az(k) + Bu(k),z € R",u € R™; we want to find a simple feedback
controller u(k) = Kxz(k), such that [A\| < 1,VA € 0(A + BK), i.e. the resulting closed-loop system is
exponentially stable

e To study this we look at the reachability problem: what are the states reachable in [ steps, using any
{u(0),...,u(l—1)} from 2(0)?

k—1

— a(k) = A*z(0) + > A1 Bug(j)
§=0
u(n —1)
— For k = n this can be expanded: z(n) = [B AB --- A" 'B] : + A"z(0)
u(0)
— We have the controllability matriz Q. = [B AB .- A”_lB] € R*(nm)
* Note this is identical to the controllability matrix in the continuous case
u(n —1)
— If we want z(n) = 0, then we just need to find the inputs so that Q. : = —A"z(0)
u(0)

* Therefore if rank(Q.) = n then we can always find a set of control inputs to drive the system



to zero in n steps regardless of z(0)
* We can prove this to also be a necessary condition, i.e. we can drive the system to zero in n
steps if and only if rank(Q.) =n
— As with the continuous case, there is no need to look at [ > n since by Cayley-Hamilton,
rank([B AB --- A'"'B]) < rank(Q.) regardless of [

The LTI system (A, B) is controllable if rank(Q.) = n, where Q. = [B AB --- A" 'B].

e In discrete time we also have a controllable canonical form which looks the same as the continuous-time
controllable canonical form; a system is controllable if and only if it can be transformed into this form

If (A, B) is controllable where A € R™*" B € R™*™, then for any desired symmetric (i.e. conjugate
pairs) spectrum { Aiq, ..., Anq } where Mg € C, there exists a state feedback u(k) = Kz (k) with
K € R™*" such that 0(A+ BK) = { A4, .-, A\na }-

0 1 0 0
o Example: pole placement for z(k+1)= [0 0 1| x(k)+ [0] u(k)
a; az as 1

This is in controllable canonical form so we know it’s controllable
— Let the desired eigenvalues be {0,0.5,0.5}
0 1 0
Let K = [ky ky k3| and expand A+ BK = | 0 0 1
a1+ k1 as+ ke as+ks
— Characteristic polynomial: det(sI — (A + BK)) = s* — (a3 + k3)s* — (a2 + k2)s — (a1 + k1)

— Expand desired characteristic polynomial: (s — 0)(s — 0.5)(s — 0.5) = s° — 52 + Y&

1
— Solve for the terms to get k; = —ay, ko = 1 as, ks =1—as
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Deadbeat Control

o If (A, B) is controllable, it is possible to arbitrary assign o(A + BK); what if we assign the spectrum to
be all zeros?

— This means the characteristic polynomial of A + BK is s"; by Cayley-Hamilton, we then have

(A+BK)"=0
— Therefore by using a controller u(k) = Kz (k) and setting a zero spectrum, the closed-loop system
goes to 0 in exactly n steps, i.e. z(n) =z(n+1)=---=0

— This is called deadbeat control, and is in theory the perfect controller in discrete time

* This behaviour of finite-time convergence is not possible in continuous time with only linear
feedback

Stabilizability

The LTI system x(k + 1) = Az(k) + Bu(k) is stabilizable if there exists a linear feedback K € R™*P
such that o(A + BK) is in the open unit disk in C, i.e. the closed-loop system is asymptotically stable.

o This definition is analogous to that of the continuous time case

10



o It is possible for a system to be stabilizable but not controllable

Ceg w(k41) = [0(')1 (1’] (k) + m u(k)

— We can tell that by inspection we have no control over the first state since the input is zero in that
state and it is not affected by the second state

— We can also check Q. = [B AB]| = {(1) (1)]

— However, we can pick u(k) = koxo(k) such that |1+ ko| < 1, which gives A+ BK = 0 14k
2

which is Schur stable, therefore the system is stabilizable despite it not being controllable
— In general for some uncontrollable systems, the uncontrollable states are already stable, so we can
do a partial state feedback to control only the unstable ones (Kalman decomposition)

The eigenvalue X is controllable for a system (A, B) if rank ([A — A B]) =n.

PBH Test: The system (A, B) is controllable if and only if every A € o(A) is controllable. If there
are uncontrollable eigenvalues, they must have |A| < 1 for the system to be stabilizable, i.e. (A, B) is
stabilizable if and only if each A € o(A) where |A\| > 1 is controllable.

0.1 0]

e Example: with the same system from before

~ o(A)={0.1,1}

0 0 0
~ For A =0.1: rank [A —0.1T B] = rank {0 0.9 1

-09 0 0
—For/\zlzrank[A—I B]:rank 0 01

— By the PBH test we conclude that the system is uncontrollable but stabilizable

} =1 < 2 so this eigenvalue is uncontrollable

= 2 so this eigenvalue is controllable

Lecture 11, Jan 29, 2026

Adaptive Control — Static Error Model

o Consider the linear regression problem: given measurements y(k) € R, regressor w(k) € R, and a
linear model y(k) = ¢ w(k) where the parameter vector 1 € RY is unknown, we want to recover 1
— Note that our measurements and regressor are functions of time, so we can’t do this instantly
« We want to build an estimate of the parameters, ¢(k) € R? (note that this is a function of time)
— Let the estimated output (k) = 1" (k)w(k) and prediction error e(k) = §(k) — y(k)
— Let the parameter estimation error ¢ (k) = (k) — 1
— This lets us write e(k) = o7 (k)w(k), which is known as the static error model of adaptive control
* This is called “static” as the error depends instantaneously on the current values of the
estimation error and regressor, instead of having a dynamics that depends on past values
« To update ¢(k), we use the gradient law: h(k+1) = (k) —~(k)e(k)w(k) where (k) is a time-dependent
learning rate

— Let the cost J(¢)) = %||e||2, where e = 7w = wT (¢ — )
~\NT R T
— The gradient of the cost is VJ(¢)) = a‘]—(fp) = BJ_(@b)a_eA = (ew™)” = ew, giving the
o de o)
~v(k)e(k)w(k) term B
. Y _ . . .
— For the learning rate, we take y(k) = ———————= where 7 is some nominal learning rate
® = T



* The term in the denominator normalizes by the regressor, so our step size stays bounded,
which is necessary for stability
* Note we will show later that convergence requires ¥ € (0, 2)
« However, this alone does not guarantee ¢)(k) — 1 (e.g. consider a constant w(k) = 0); intuitively, the
regressor has to do something “interesting” — this is the persistence of excitation (PE) condition

A regressor w(k) € RY is persistently exciting (PE) if
+N—
360 >0, N eN,N >0 s.t. fol W —i Z ),Vk €N
0o>0, ) -t fol s N 2 0

where A < B denotes 7 Az < 27 Bz, Vx € RY.

J

e Note that the key difference between the adaptive control approach versus the least-squares approach is
that least squares is a batch approach, i.e. it processes all the data at once, whereas adaptive control
processes the data as it comes; consider the least squares approach:

— We collect {y(k) fc\’:_ol ,{w(k) kN:_Ol

y(0) w? (0)
— Let Y(0O,N) = and X(0,N) = ,80Y(0,N) = X(0,N)y
y(N —1) wl (N —1)
— We solve for min || X (0, N)¢ — Y (0, N)|?

PeRa

* This is only solvable if X (0, N) has full column rank

* Tt turns out that the full rank condition here is related to the persistence of excitation condition
in adaptive control

— If X(0,N) has full column rank, then = (XT(0,N)X(0,N))"'XxT(0, N)Y (0, N)

Lecture 12, Jan 30, 2026

Model Reference Adaptive Control

o In the model reference adaptive control (MRAC) problem, we have a system z(k + 1) = Az(k) + Bu(k)
and a reference model z,(k + 1) = A,z (k) + B,r(k), and our goal is to have z(k) track z,(k)
— Assume A, A, and B are known, but B, is not, and we have state measurements for z(k), z, (k)
— r(k) € R is an exogenous input, which can represent a tracking signal or a disturbance
* Assume 7(k) = ¢ w(k) where w(k) is a known regressor and 1) is an unknown parameter
vector
e c.g. maybe we know the potential frequencies that can make up the disturbance but not
their magnitudes
— We also require that A, is Schur stable
« We work with a controller u(k) = Kxz(k)+¢" (k)w(k) for some K € R'*", where the first term stabilizes
the transient behaviour, while the second term gives the desired steady-state behaviour
~ This results in the closed loop system z(k + 1) = (A + BK)xz(k) + BT (k)w(k)
o Let the tracking error (k) = x(k) — z,(k); what are its dynamics?
- Zk+1)=a(k+1) —z.(k+1)

= (A+ BK)z(k) + BT (k)yw(k) — Apa, (k) — BoyTw(k)
= (A+ BK)(@(k) + 2,(k)) — Avay (k) + (BYT (k) — BoyT )w(k)

= (A+ BK)i(k) + (A+ BK — A,)z,(k) + (BOT (k) — BT )w(k)
— To have Z(k) — 0, we need to impose the matching conditions: A, = A+ BK and B, = bB for
some b € R

12



Adaptive Control — Dynamic Error Model

« The general dynamic error model is zo(k + 1) = Ax.(k) + BT (k)w(k), e(k) = BT Pz (k), where
z.(k) is a measurable error state, (A4, B) is known, A is Schur stable, w(k) is a known regressor,
(k) = (k) — 9, and P is a symmetric positive definite matrix which solves the Lyapunov equation
ATPA-P=-]

— Note that A being Schur stable guarantees that a solution exists for AT PA — P = —I, as we have
derived with Lyapunov analysis of LTI systems

— The MRAC problem reduces to this

— The use of e(k) comes from Lyapunov theory, which we will see later

« Consider the transfer function for the system, using e(k) as the output and /" w(k) as the input, we

get H(z) = BTP(2z1 — A)"'B
— Using the transfer function, e(k) = H(2) [¢" (k)w(k)]
* Note that the notation here mixes time and Z-domain, with [ ] denoting a domain change
— Notice the similarity between this and our static error model; can we redefine our regressor to
incorporate H(z)?
o Let the augmented error e, (k) = e(k) —
regressor, and (k) = H(z) W)T(k‘)w(k‘)
H(z) w (k) H(z) [wi (k)]
— Note H(2)I [w(k)] = =
H(2)] [wq(k) H(z) [wq (k)]
* This can be interpreted as “filtering” the regressor signal by our plant

~

(k) =T (k)wq (k) where wq (k) = H(2)I [w(k)] is the augmented

<>

[E—1
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