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• A random variable X is a variable whose value x may vary due to randomness
– For probability density function (PDF) p(x) we have

�
x

p(x) dx = 1

–
� b

a

p(x) dx is the probability of x ∈ [a, b]

• For joint distributions p(x, y) we can find the marginal distribution by integrating over one or more
variables (marginalization): p(x) =

�
p(x, y) dy

• A conditional probability is given by p(x|y = y∗) = p(x|y) = p(x, y)
p(y) ⇐⇒ p(x, y) = p(x|y)p(y)

• This leads to Bayes’ rule: p(y|x) = p(x|y)p(y)
p(x)

– p(y|x) is posterior
– p(y) is the prior
– p(x|y) is the likelihood
– p(x) is the evidence
– e.g. if y is some robot state and x is a sensor measurement, we have that the probability of

being in a state given that we have some measurement is equal to the probability of getting the
measurement if we are in that state, times the previous belief of our probability of being in that
state, divided by the probability of getting the measurement in general

• The expectation of f(x) is E[f(x)] =
∑

x

f(x)p(x) (discrete) or
�

x

f(x)p(x) dx (continuous)

– Note the expectation is a linear operator
• The Gaussian/normal distribution: x ∼ N (µ, σ2) = 1√

2πσ2
e− (x−µ)2

2σ2 for mean µ, standard deviation σ

– In higher dimensions: x ∼ N (µ, Σ) = 2π− n
2 det Σ− 1

2 e− 1
2 (x−µ)T Σ−1(x−µ) for an n-dimensional

Gaussian
• Often the PDF for a random variable is very complex, so to represent it in code we approximate it by

one of many methods (e.g. single Gaussian for unimodal data, mixture of Gaussians for multimodal
data, histogram, particle distribution for arbitrary distributions)

Estimation Techniques
• Consider the linear regression problem, where we are given a number of noisy points (xi, yi), and we

want to fit our model yi = f(xi; θ) = mxi + b where θ = (m, b) is the vector of parameters we wish to
determine

• We want to minimize ELS =
∑

i

∥ỹi − f(xi; θ)∥2 =
∑

i

∥ỹi − (mxi + b)∥2

– ỹi are the measurements and ri = ỹi − (mxi + b) are the residuals

• In matrix form, y =
[
x 1

] [
m
b

]
= J(x)θ where J(x) = ∂f(x; θ)

∂θ
is the model Jacobian with respect

to the parameters (this is possible since we have a linear model)

– Substitute and expand: ELS = θT

[∑
i

JT (xi)J(xi)
]

θ − 2θT

[∑
i

JT (x)ỹi

]
+

∑
i

ỹ2
i

– Since
∑

i

ỹ2
i is constant, we minimize the other part

– By differentiation we get θ̂

[∑
i

JT (xi)J(xi)
]−1 [∑

i

JT (xi)ỹi

]
(normal equation)
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• If data points are weighted differently, we change the loss to EW LS =
∑

i

σ−2
i ∥ri∥2

– This is known as the Mahalanobis distance
• But notice due to the quadratic cost function, this method is sensitive to outliers; the model is distorted

significantly to account for just a few outliers

Figure 1: Example fit with outliers.

RANSAC

• RANSAC or Random Sample Consensus is a method for outlier rejection:
1. Determine the smallest number of data points required to fit the model

– In the linear regression case, we have 2 points for a line
2. Draw the smallest possible subset to fit the model

– Usually this is drawn by uniform sampling, unless we have a prior
3. Check the number of points in the whole dataset that are within some threshold of the model

prediction – these are the inliers
4. If we have enough points within the threshold, terminate

– At this point we can re-fit the model to the inliers for better generalization/noise resistance
5. Otherwise repeat from step 2 to generate a new hypothesis until we reached the max number of

iterations

• RANSAC requires 2 parameters: the error tolerance for model compatibility, the max number of subsets
to try, and the threshold for the number of inliers for a success

• Let w be the probability of drawing an inlier, then we can model the expected number of trials k needed
to select n good data points

– Let b = wn be the probability of getting only inliers for our model, and a = 1 − b
– E[k] = b + 2(1 − b)b + 3(1 − b)2b + · · · + i(1 − b)i−1b + · · ·

= b(1 + 2a + 3a2 + · · · + iai−1 + · · · )

= b

∞∑
i=1

iai−1

= 1
b

= w−n
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Figure 2: RANSAC on example data: incorrect hypothesis (containing an outlier) resulting in a model that
captures very few data points.

Figure 3: RANSAC on example data: correct hypothesis resulting in a model that captures most data points
and rejects all outliers.
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• How many iterations do we need to get at least one good sample with probability z?
– z = 1 − (1 − wn)k = 1 − (1 − b)k

– This gives k = log(1 − z)
log(1 − b)

– Now we can substitute in the desired probability to get an outlier-free sample, z, and the probability
of drawing a good sample b = wn to get the number of iterations that we should run RANSAC

Note

For RANSAC, we want the subset that we draw to fit the model to contain only inliers and generalize
well enough to the rest of the dataset. In most cases this means drawing the minimum number of
points to fit the model, since this makes it less likely that we will draw an outlier, decreasing the
expected number of required iterations. However, drawing more points has the benefit of reducing
noise and numerical sensitivity and risk of degeneracy. Especially in cases where the outlier ratio is
known to be low, it may be beneficial to draw non minimal samples sometimes.

4


	Lecture 3, Sep 9, 2025
	Probability Theory Review
	Estimation Techniques
	RANSAC



