Lecture 17, Nov 7, 2025

Image Segmentation

- Gestalt theory is the idea of "the whole is greater than the sum of its parts" we perceive images as entire patterns, instead of individual components/pixels
 - Law of proximity: We naturally group things together based on proximity
 - Law of similarity: We group things based on similarity
 - Law of continuity: We group continuous objects together, and we understand that an object continues even if it's partially occluded
- Segmentation is the task of finding pixels that "go together", grouping them and potentially classifying
 - Early techniques were divisive (breaking up an image/objects) or agglomerative (growing out from a point) and operate locally
 - More recent techniques are global and optimize across regions
 - Many types of segmentation:
 - * Coarse segmentation: bounding boxes for objects
 - * Fine segmentation: splines to describe boundaries between objects or pixel-wise labels/masks
 - * Semantic segmentation: segmenting based on what the object is, e.g. chair vs non-chair
 - * Instance segmentation: semantic segmentation, but being able to tell apart different instances of objects
 - * Panoptic segmentation: segmenting instances of countable objects (foreground "things", e.g. people) and grouping together uncountable objects (background "stuff", e.g. a road)

Figure 1: Example of semantic segmentation (but not instance-level).

Classical Segmentation Methods

- The simplest segmentation approach is to just to apply a threshold to the intensity levels (or to a specific channel in some colour space), then finding connected components to get the regions
- Active contours is an energy-minimization approach that fits a spline f(s) = (u(s), v(s)) to minimize an energy function
 - Smoothness cost: $\mathcal{E}_{int} = \int \alpha(s) \|\mathbf{f}_s(s)\|^2 + \beta(s) \|\mathbf{f}_{ss}(s)\|^2 d\epsilon$ * Penalizes sharp changes/kinks
 - Image energy: $\mathcal{E}_{\text{image}} = w_{\text{line}} \mathcal{E}_{\text{line}} + w_{\text{edge}} \mathcal{E}_{\text{edge}} + w_{\text{term}} \mathcal{E}_{\text{term}}$
 - * The terms attract the spline to dark ridges, strong gradients (edges), and line terminations respectively
 - * In practice this is primarily the edge term, $\mathcal{E}_{\text{edge}} = \sum_{i} \|\nabla I(\boldsymbol{f}(i))\|^2$, i.e. summing up the gradient magnitude at all the points on the spline
 - The *B-spline* is defined as $f(s) = \sum_k B_k(s) x_k$, where $B_k(s)$ are k basis functions and x_k are

control points (i.e. parameters)

- * B-splines are generalizations of Bezier curves
- For evolving images/contours, we can model it with linear dynamics: $x_t = Ax_{t-1} + w_t$ where x_{t-1} are the contour control points from the previous iteration, A is the transition matrix, and w_t is some noise vector
 - This is known as conditional density propagation (aka CONDENSATION)
 - To implement this we can use a particle filter, where each particle is a contour, and we propagate the belief using \boldsymbol{A}
- Split and merge algorithms perform segmentation by a combination of recursive splitting of the image and merging together regions
 - The watershed algorithm starts from seed points, and performs watershed segmentation
 - * Interpret the grayscale image as a topographic image, i.e. darker regions are "valleys"
 - * The idea is to fill the local minima with "water", i.e. propagate outward from the minima until we hit a high-intensity boundary
 - * This assumes that the boundaries are similar in intensity
 - * Locality constraints can be applied so that the regions to close off the regions

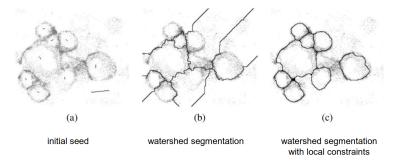


Figure 2: Example of the watershed algorithm.

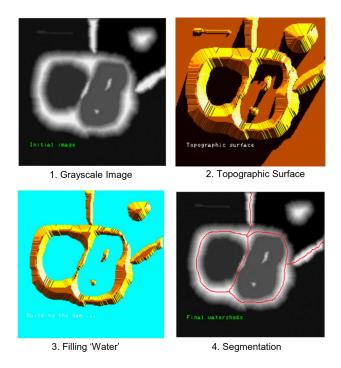


Figure 3: Watershed algorithm steps.

• One category of segmentation methods attempts to cluster pixels on a feature level or directly over

some colour space, e.g. LUV

- We basically want to find blobs of similar pixels in some colour/feature space and cluster them together, where each cluster represents a region
- This can be done over colour, position, etc
- The mean-shift algorithm considers each pixel to be a sample from a PDF, with multiple means; kernel density estimation is used to estimate this PDF, and the modes of the PDF are used for the segments

- The kernel density estimator is
$$f(\boldsymbol{x}) = \sum_{i} K(\boldsymbol{x} - \boldsymbol{x}_i) = \sum_{i} k\left(\frac{\|\boldsymbol{x} - \boldsymbol{x}_i\|^2}{h^2}\right)$$

- * x_i are the samples and x is the mean
- * h is the bandwidth of the kernel and controls the spread of the distribution, i.e. how quickly the density varies
- * We often use the Gaussian kernel $k_N(r) = e^{-\frac{1}{2}r}$
- The mean-shift algorithm uses multiple restart gradient descent:
 - 1. For each mode y, start with some initial guess y_0
 - 2. Compute the next \boldsymbol{y} by adding the mean-shift, $\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + \boldsymbol{m}(\boldsymbol{y}_k) = \frac{\sum_i \boldsymbol{x}_i G(\boldsymbol{y}_k \boldsymbol{x}_i)}{\sum_i G(\boldsymbol{y}_k \boldsymbol{x}_i)}$ * G is the derivative of the kernel function, so this is like computing an average gradient
 - 3. Repeat until convergence, $\|\boldsymbol{m}(\boldsymbol{y}_k)\| < \epsilon$
- One simple approach is to initialize a mode at each input point, and iterate until all pixels have converged to a mode; then each distinct mode will be a segment, consisting of all the pixels that converged to it

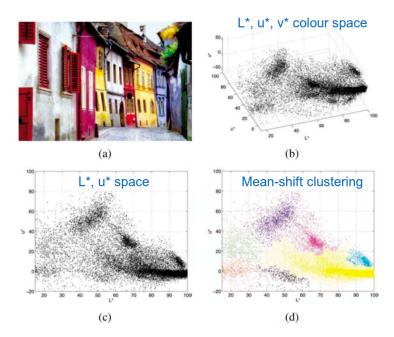


Figure 4: Example of mean-shift clustering in LUV colour space.

- The graph cuts algorithm constructs the image as a graph and attempts to cut the graph into regions
 - The idea is that pixels that should be grouped together should share affinity
 - The nodes of the graph are pixels
 - The edges are weighted using an affinity function based on salient properties, e.g. pixel distance, intensity difference, colour difference, texture metrics (e.g. by convolution)
 - We can make either minimum cuts (using the max-flow/min-cut algorithm), or normalized cuts (cost of the cut normalized by the size of segments)
 - * Minimum cuts can be solved efficiently but tends to penalize large segments, so it can over
 - * Normalized cuts are better, but is NP-hard in general, although we can use approximations

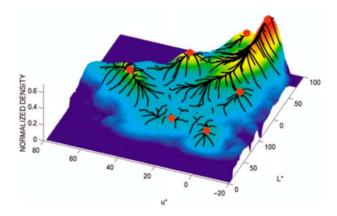


Figure 5: Example trajectory of points from the mean-shift algorithm. The black lines represent trajectories of each pixel point, which all converge to one of multiple final modes (red points).

• The segmentation problem can be formulated as a *Markov Random Field* (MRF), where we consider the segmentation solution as the "true" pixel states, and the image itself as the observed "evidence"

– We want to minimize energy
$$E(x,y) = \sum_i \varphi(x_i,y_i) + \sum_{ij} \psi(x_i,x_j)$$

- Can be formulated as a min-cut problem for binary (foreground/background) labelling
- GrabCut is a classical segmentation method that uses a user-supplied bounding box, and an MRF model
 - A Gaussian mixture model (GMM) is fit to the foreground and background colour
 - The MRF energy is defined based on the GMM, and min-cut is applied to classify into foreground and background
 - Repeat until convergence, fitting a new GMM each time

Modern Approaches

- Modern approaches are mostly based on deep learning, focusing on pixel-level segmentation and classification
 - Obtaining ground truth data is difficult since images often have to be labelled manually per-pixel (nowadays we preprocess using existing segmentation networks)
 - SegNet is one of the first modern approaches for autonomous driving
- Many segmentation networks are based on a U-Net architecture, with down convolutions going to bottleneck layers, then up convolutions to recover the full resolution, and skip connections in between
- Datasets include KITTI (only 200 training/test), TUM SceneFlow (fully synthetic), and City Scapes (5000 real-life examples, instance-level segmentations across 50 cities for 30 classes)

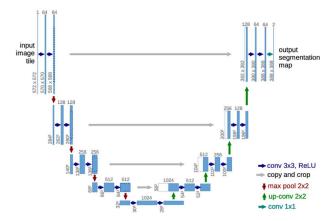


Figure 6: U-Net architecture used for medical image segmentation.

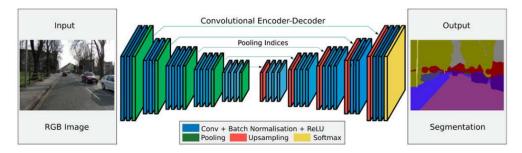


Figure 7: SegNet architecture.