Lecture 10, Oct 3, 2025

Review Lecture

- Important content by lecture:
 - Lecture 2 (mathematical foundations)
 - * Different types of linear transformations and what properties they preserve, what situations they come up in
 - * Rotations in 3D (properties of SO(3)) and representations (matrix, Euler, axis-angle, quaternion)
 - Lecture 3 (probability and regression)
 - * Conditional probability (Bayes' rule)
 - * Linear regression, standard linear least squares formulation and solution
 - * RANSAC algorithm: working principles, expected/required number of trials to get an outlier-free sample with some probability
 - Lecture 4 (optics)
 - * Ideal pinhole camera model
 - * Definition of the camera reference frame, optical axis, image plane, principal point
 - * Projective map
 - * Camera matrices (intrinsics and extrinsics), projecting onto the image plane
 - * Lens distortion model
 - * Optical effects that degrade images (vignetting, other effects)
 - Lecture 5 (image operations)
 - * Point operations (thresholding, brightness, contrast, gamma adjustment, histogram equalization)
 - * Linear filtering (convolutions, separable filters)
 - * Nonlinear filtering (band-pass, bilateral)
 - * Geometric transformations (viewpoint transformation and bilinear interpolation)
 - * Regularization?
 - Lecture 6 (image features: detection and description)
 - * Important characteristics of features (saliency, locality, repeatability, compactness)
 - * Various feature detectors, classical (Harris, SIFT, SURF, FAST, BRISK, BRIEF, ORB) and learned (LIFT)
 - Lecture 7 (image features: matching)
 - * Feature descriptor distance functions (SSD between patches, hamming distance, Euclidean distance)
 - * Rejecting outliers (RANSAC, ratio test)
 - * Binary classification evaluation (confusion matrix, ROC curve)
 - * Matching techniques (hashing, k-D trees)
 - * KLT tracker (local matching) as alternative to matching through the whole image
 - Lecture 8 (camera pose estimation) (★)
 - * Perspective-n-point: problem definition
 - * Direct linear transform to solve the homography (as an approximation)
 - * Nonlinear least squares (iterative algorithm)
 - * Regressing rotations (Wahba problem, Euler angles and rotation matrix/axis-angle formulation)
 - Lecture 9 (stereo)
 - * Epipolar geometry (epipolar planes, lines, epipolar point)
 - * Stereo preprocessing pipeline (stereo rectification)
 - * Stereo camera model (depth from disparity)
 - * Foreshortening problem
 - * Basic idea of stereo matching algorithms (local vs. global algorithms, window size)
 - * Learning based state-of-the-art methods