Lecture 1, Sep 2, 2025

Introduction to Robotic Vision

- Many vision problems are *ill-posed*, i.e. a solution may not exist, may not be unique, or may not be continuous with regard to change of the initial conditions
- Vision is an inverse problem
 - Much information is lost, so we need to appeal to probabilistic models
 - Most of our physical models are forward models, i.e. how should a particular object look under certain conditions?
 - The inverse is non-unique, e.g. a bigger object far away appears the same as a smaller, closer object
 * This is known as scale ambiguity
 - By projecting 3D geometry to a 2D image we lose a lot of information appearance only weakly depends on geometry

Definition

The imaging function (i.e. perspective projection):

$$I = \mathscr{P}(G, M, V, L, A, \epsilon)$$

where:

- G: Scene geometry (shape of the world)
- M: Materials
- V: Viewpoint (where the camera is located)
- L: Lighting (where light sources are)
- A: Atmospherics (how light interacts with the atmosphere)
- ϵ : Noise

We aim to find \mathscr{P}^{-1} to recover G, M, V from I.

- Parallel lines converge at "points at infinity" under perspective projection, and shapes are distorted
- Datasets typically contain synchronized, timestamped data from GPS/INS, LiDAR, stereo, etc. and accurate intrinsic/extrinsic calibration of sensors
 - Popular datasets include KITTI, Waymo Open (100x larger than KITTI), Nuscenes (object detection and tracking)