

Tutorial 2, Sep 22, 2025

- Show that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors
 - We have shown that if \mathbf{A} has n linearly independent eigenvectors, it is diagonalizable; now we need to show implication in the other direction
 - If \mathbf{A} is diagonalizable, by definition there exists $\mathbf{P} \in \mathbb{C}^{n \times n}$ such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} \in \mathbb{C}^{n \times n}$ is diagonal
 - Therefore $\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{\Lambda}$
 - $\mathbf{A}\mathbf{P} = \mathbf{A} [\mathbf{v}_1 \ \dots \ \mathbf{v}_n] = [\mathbf{A}\mathbf{v}_1 \ \dots \ \mathbf{A}\mathbf{v}_n]$
 - $\mathbf{P}\mathbf{\Lambda} = [\mathbf{v}_1 \ \dots \ \mathbf{v}_n] \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = [\lambda_1 \mathbf{v}_1 \ \dots \ \lambda_n \mathbf{v}_n]$
 - Equating the columns we have that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are the eigenvectors of \mathbf{A}
 - Now to prove linear independence, we know $\mathbf{P}\mathbf{v} = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$ as \mathbf{P} is invertible; so the only linear combination of the columns of \mathbf{P} that results in 0 is all zeros, therefore its columns are linearly independent
- $\mathbf{A} = \begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & -2 & 0 & 0 \\ -3 & -1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$
 - To make the computation for eigenvalues tractable, we expand the determinant along rows that are mostly zeros
 - $\det(\lambda\mathbf{I} - \mathbf{A}) = \det \begin{bmatrix} \lambda - 1 & -1 & -3 & 0 \\ 0 & \lambda + 2 & 0 & 0 \\ -3 & -1 & \lambda - 1 & 0 \\ 0 & 0 & 0 & \lambda - 4 \end{bmatrix}$
 - $= (\lambda - 4) \det \begin{bmatrix} \lambda - 1 & 1 & 3 \\ 0 & \lambda + 2 & 0 \\ 3 & 1 & \lambda - 1 \end{bmatrix}$
 - $= (\lambda - 4)(\lambda + 2)((\lambda - 1)^2 - 9)$
 - $= (\lambda - 4)(\lambda + 2)(\lambda - 4)(\lambda + 2)$
 - $= (\lambda - 4)^2(\lambda + 2)^2$
 - By inspection the eigenvectors for $\lambda = 4$ are $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$
 - The only eigenvector for $\lambda = -2$ is $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ (we can show that $\text{rank}(-2\mathbf{I} - \mathbf{A}) = 3$)
 - Since we don't have enough eigenvectors, the matrix is not diagonalizable (using the result from the first question)