
Lecture 9, Sep 24, 2025
Stability

Definition

A system ẋ = Ax, x(0) = x0 is said to be stable if for every x0 ∈ Rn, the solution x(t) = eAtx0 is
bounded, i.e.

∃M < ∞ s.t. ∥x(t)∥ ≤ M , ∀t ≥ 0

The system is asymptotically stable if for every x0 ∈ Rn,

lim
t→∞

x(t) = 0 ∈ Rn

Theorem

The system ẋ = Ax, x(0) = x0 is asymptotically stable if and only if Re(λi) < 0 for all eigenvalues λi

of A.

• The intuition here is that we can decouple the system using the eigenvectors like we showed before, and
if all eigenvalues have negative real parts, then all components must decay to 0

• Asymptotic stability is equivalent to eAt converging to 0 as t → ∞ (since this is the unique solution)
– Recall that using the Jordan form, this is equivalent to eJλi

t converging to 0 for each i, which can
be expanded to eλitN where N is a matrix of polynomials of t

– Suppose all Re(λi) < 0; then eλit times any polynomial of t will decay to 0 as t → ∞ for all i,
since the exponential grows faster than any polynomial

– Therefore every term in every Jordan block will converge to 0, and so eAt converges to 0 and the
system is asymptotically stable

• We can also define some notions of stability when the input u is involved:

Definition

The system
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is bounded-input-bounded-output stable (BIBO stable) if, when x0 = 0, as long as the input u(t) is
bounded, the output y(t) is bounded.

The system

y(t) =
ˆ t

0
h(t − τ)u(τ) dτ

where h : [0, ∞) 7→ Rm×p is BIBO stable if for all bounded u(t), y(t) is also bounded. Note this
model implicitly assumes zero inital conditions.

Definition

The system
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is input-output stable if for all inital conditions x0 ∈ Rn, a bounded u(t) implies a bounded y(t).
Note input-output stability implies BIBO stability.
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Theorem

If ẋ = Ax is asymptotically stable, then for any B, C, D, the system

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is both BIBO and input-output stable.

• Recall that PSD for a real symmetric matrix means vT P v ≥ 0 for all v ∈ Rn, and positive definite
means vT P v > 0 for all nonzero v

– PSD is sometimes denoted P ∈ S+
n ; positive definite is denoted P ∈ Sn

• For complex v, v∗P v > 0 for positive definite P , and greater than or equal to zero for PSD P (v∗

denotes a conjugate-transpose or Hermitian transpose)
– v∗P v = (x + iy)∗P (x + iy)

= (xT − iyT )P (x + iy)
= xT P x − iyT P x + ixT P y − i2yT P y

= xT P x + yT P y
* Since P is positive definite (or PSD) the last two remaining terms are both positive (or

nonnegative for PSD)
* Note that yT P x is a scalar, so we can take its transpose, and since P is symmetric we can

show the expression is equal to xT P y and so the middle terms cancel

Theorem

Let P ∈ Rn×n be symmetric; then P is positive definite if and only if all its eigenvalues are positive;
P is positive semidefinite if and only if all its eigenvalues are non-negative. This result is sometimes
known as the spectral theorem.
Note since P is real and symmetric, all eigenvalues are real.

This theorem also applies for negative (semi-)definite matrices and negative (nonpositive) eigenvalues.

Theorem

Let A ∈ Rn×n and suppose there exists a symmetric positive definite matrix P such that

Q = −AT P − P A

is also positive definite, then ẋ = Ax is asymptotically stable. Q is known as the continuous-time
Lyapunov operator.

• Let e ∈ Cn be an eigenvector of A; we know e∗Qe = e∗(−AT P − P A)e > 0 and we can expand the
right hand side, using Ae = λe, to show that all the eigenvalues of A have negative real parts

• In discrete time, the analogous equation is xk+1 = Axk, which turns out to be asymptotically stable if
and only if |λi| < 1 for all eigenvalues of A

– The analogous definition of Q is Ld(P ) = P − AT P A and it also holds that if there exists a
P that makes this positive definite, then A has all eigenvalues with magnitude less than 1 and
therefore the system is stable

• Now consider A with eigenvalues less than or equal to zero; if we take its Jordan form and expand eJt,
we find that in some Jordan blocks we only have eλt, but in other blocks we have terms with eλt times
a polynomial of t

– We allow the blocks that only have eλt to have a zero eigenvalue, since this becomes a constant
– However the blocks containing eλt times a polynomial must have a negative eigenvalue, because
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otherwise that term will grow to infinity as t → ∞
– This means for all Jordan (sub-)blocks that are bigger than 1 × 1, its λ value must be strictly

negative
– Recall that we get bigger Jordan blocks when the algebraic multiplicity is greater than the geometric

multiplicity for some eigenvalue
– This is the intuition for the next theorem

Theorem

ẋ = Ax is stable if and only if Re(λi) ≤ 0 for all i, and if for all eigenvalues that have Re(λi) = 0, the
algebraic multiplicity equals the geometric multiplicity for that eigenvalue.

• To prove this, we equate stability to eAt being bounded, which is equal to eJt being bounded, which we
can consider separately for negative and zero eigenvalues:

– Re(λj) < 0: then all lim
t→∞

eJλj
t = 0 since the exponential grows faster than all polynomials

– Re(λj) = 0: eJλj
t is bounded if and only if it has no polynomials in t; this only happens if we have

Jordan blocks of size 1, which happens if and only if the geometric and algebraic multiplicities are
equal

• Example: A =
[
λ 1
0 λ

]
; under what conditions is ẋ = Ax stable? Asymptotically stable?

– For both stability and asymptotic stability, we require λ < 0, since for this matrix λ has algebraic
multiplicity of 2 but geometric multiplicity of 1

– We can see this from eAt =
[
eλt teλt

0 eλt

]
since the matrix is already in Jordan form

Theorem

If Re(λi) > 0 for any eigenvalue λi of A, then ẋ = Ax is unstable.
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