Lecture 7, Sep 19, 2025

Reasoning About System Behaviour With Eigenvalues and Eigenvectors

o Consider a system & = Az, x(0) = xo
— Assume that A is diagonalizable, so the solution is #(t) = etaxy = Pe* P lx,
« Consider the transformed coordinate space z(t) = P~ 'x(t); how does the system look in this coordinate
system?
— 2=P7'@(t)= P 'Ax(t) = P"'PAP 'z(t) = Az(t)
— Since A is diagonal, we get 2;(t) = A\;z;(¢), in other words, a set of n decoupled linear differential
equations
— Bach one is solved by z;(t) = e*i!z;(0), resulting in much easier to analyze system behaviour
n

n
~—x(t) = Pz(t) = Zvizi(t) = Zvie)‘itzi(())
i=1 i=1
* Each term of the sum is called the i-th mode of z(t); the entire operation is known as a modal
decomposition

n
* We denote h;(t) = Z vieitz;(0)
i=1

e Geometrically, we can imagine drawing each of the v; as a line; if the associated \; is negative, solutions
shrink and go towards 0 along this line; conversely if \; is positive, solutions expand and go to infinity
along the line

— For any initial condition @y we can decompose it into components along each v;, and each of those
components will evolve according to \; (towards or away from the origin at a speed determined by
the magnitude)

— In the z coordinate system this is easier to see since the v; are now along the coordinate axes
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Figure 1: Ilustrations of how solutions evolve in the x coordinate system, for an example where A; < 0, A2 > 0.

System Behaviour According to Eigenvalues

o With the above knowledge we can now categorize systems according to their eigenvalues
e Case 1: Real and nonzero eigenvalues
— If all eigenvalues are less than 0, we have a stable node since all initial conditions converge towards
Zero
— If all eigenvalues are greater than 0, we have an unstable node since all initial conditions explode
to infinity (except for 0, which stays at 0)



— If eigenvalues have mixed signs, we get a saddle point as initial conditions will move towards zero
along one axis but diverge away from it on another axis; again, zero is the only initial condition
that does not diverge

o Case 2: Complex conjugate eigenvalues A\; = a + ib, A = a — ib (recall that the solution in this case is
at | cos(bt)  sin(bt)
—sin(bt) cos(bt) )

— If a < 0, we get a stable focus as solutions spiral in towards zero

— If a > 0, we get an unstable focus as solutions spiral outwards from zero towards infinity

— If a =0, we get a centre since all solutions stay orbiting the origin in a circle, not converging or
diverging

— In all cases, the magnitude determines the rate of spiral

o Case 3: One nonzero eigenvalue

— The eigenvector with zero eigenvalue forms a line, where every point on the line is an equilibrium

— If the other eigenvalue is less than zero, all solutions converge towards that line; if the other
eigenvalue is greater than zero then all solutions diverge from the line

— All initial conditions follow a straight path towards the equilibrium line, defined by the other
eigenvector (nonzero eigenvalue)
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Figure 2: Behaviour for complex eigenvalues.
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