
Lecture 7, Sep 19, 2025
Reasoning About System Behaviour With Eigenvalues and Eigenvectors

• Consider a system ẋ = Ax, x(0) = x0
– Assume that A is diagonalizable, so the solution is x(t) = eAtx0 = P eΛtP −1x0

• Consider the transformed coordinate space z(t) = P −1x(t); how does the system look in this coordinate
system?

– ż = P −1ẋ(t) = P −1Ax(t) = P −1P ΛP −1x(t) = Λz(t)
– Since Λ is diagonal, we get żi(t) = λizi(t), in other words, a set of n decoupled linear differential

equations
– Each one is solved by zi(t) = eλitzi(0), resulting in much easier to analyze system behaviour

– x(t) = P z(t) =
n∑

i=1
vizi(t) =

n∑
i=1

vie
λitzi(0)

* Each term of the sum is called the i-th mode of x(t); the entire operation is known as a modal
decomposition

* We denote hi(t) =
n∑

i=1
vie

λitzi(0)

• Geometrically, we can imagine drawing each of the vi as a line; if the associated λi is negative, solutions
shrink and go towards 0 along this line; conversely if λi is positive, solutions expand and go to infinity
along the line

– For any initial condition x0 we can decompose it into components along each vi, and each of those
components will evolve according to λi (towards or away from the origin at a speed determined by
the magnitude)

– In the z coordinate system this is easier to see since the vi are now along the coordinate axes

Figure 1: Illustrations of how solutions evolve in the x coordinate system, for an example where λ1 < 0, λ2 > 0.

System Behaviour According to Eigenvalues

• With the above knowledge we can now categorize systems according to their eigenvalues
• Case 1: Real and nonzero eigenvalues

– If all eigenvalues are less than 0, we have a stable node since all initial conditions converge towards
zero

– If all eigenvalues are greater than 0, we have an unstable node since all initial conditions explode
to infinity (except for 0, which stays at 0)
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– If eigenvalues have mixed signs, we get a saddle point as initial conditions will move towards zero
along one axis but diverge away from it on another axis; again, zero is the only initial condition
that does not diverge

• Case 2: Complex conjugate eigenvalues λ1 = a + ib, λ2 = a − ib (recall that the solution in this case is

eat

[
cos(bt) sin(bt)

− sin(bt) cos(bt)

]
)

– If a < 0, we get a stable focus as solutions spiral in towards zero
– If a > 0, we get an unstable focus as solutions spiral outwards from zero towards infinity
– If a = 0, we get a centre since all solutions stay orbiting the origin in a circle, not converging or

diverging
– In all cases, the magnitude determines the rate of spiral

• Case 3: One nonzero eigenvalue
– The eigenvector with zero eigenvalue forms a line, where every point on the line is an equilibrium
– If the other eigenvalue is less than zero, all solutions converge towards that line; if the other

eigenvalue is greater than zero then all solutions diverge from the line
– All initial conditions follow a straight path towards the equilibrium line, defined by the other

eigenvector (nonzero eigenvalue)

Figure 2: Behaviour for complex eigenvalues.
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