
Lecture 6, Sep 17, 2025
Computing the Matrix Exponential – Continued
Complex Eigenvalues

• Consider A =


1
2

−1
−1

; the eigenvectors and eigenvalues are
([

2
i− 1

]
, i

)
and

([
2

−i− 1

]
, −i

)
– Recall that eigenvector/eigenvalues always come in complex conjugate pairs, so for a 2x2 we can

take the conjugate to find the other one
– A has two distinct eigenvalues, so it is diagonalizable

• Direct calculation: eAt = P eΛtP −1

= · · ·

=
[
sin t+ cos t 2 sin t

− sin t cos t− sin t

]
– Note we applied Euler’s formula

• Alternatively, we can define P and Λ differently to avoid dealing with complex numbers

– Denote v =
[

2
i− 1

]
(the other eigenvector is v̄

– Let P̃ =
[
Re(v) Im(v)

]
=

[
2 0

−1 1

]
– Let Λ̃ =

[
0 1

−1 0

]
(the imaginary parts of λ1,λ2 are in the off-diagonal entries)

– We can show that e

[
a b

−b a

]
t

= eat

[
cos(bt) sin(bt)

− sin(bt) cos(bt)

]
* When we have complex eigenvalues, we see that this results in a rotation with a rate of decay

– Now we can compute P̃ eΛ̃tP̃ −1 and this leads to the same answer

Non-Diagonalizable Case – Jordan Forms

• Let A ∈ Rn×n have less than n linearly independent eigenvectors, i.e. it is non-diagonalizable; in this
case we cannot form an invertible P with the eigenvectors

– We will introduce the notion of generalized eigenvectors which allow us to form P in this case

• Recall that the characteristic polynomial of A is xA(s) = det(sI −A) =
σ∏

i=1
(s−λi)mi , where

σ∑
i=1

mi = n

– mi is the algebraic multiplicity of the eigenvalue λi

• The minimal polynomial ψA(s) is the polynomial of least degree such that ψA(A) = 0
– We can show that such a polynomial always exists

– The minimal polynomial has the form ψA(s) =
σ∏

i=1
(s− λi)li where li ≤ mi

* Note that normally s ∈ C; when we substitute A into the polynomial we replace λi with λiI
* This is the same form as the characteristic polynomial but we may not have to repeat each

term as many times, i.e. some of the information in the characteristic polynomial is redundant
– The li are known as the geometric multiplicity of λi

– Each li is also the number of linearly independent eigenvectors corresponding to λi (i.e. dim(N (λiI−
A)) where N denotes null space)

• Using this, we can decompose Cn into σ subspaces: Cn = N (λ1I − A)l1 ⊕ · · · ⊕ N (λσI − A)lσ

– σ denotes a direct sum, V ⊕W = { v + w | v ∈ V, w ∈ W }, where it is required that V ∩W = { 0 }
• Example: Let A ∈ R6×6 have the characteristic polynomial xA(s) = (s− λ)6 (i.e. λ repeated 6 times)

and ψA(s) = (s− λ)3 (i.e. only 3 independent eigenvectors)
– N (λI − A) = span { e1, e2, e3 } from the 3 independent eigenvectors
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– Let v1, v2 be linearly independent solutions to
{

(λI − A)v1 = −e1

(λI − A)v2 = −e2
and w1 be a solution to

(λI − A)w1 = −v1 and all of e1, e2, e3, v1, v2, w1 are linearly independent
* Multiplying by (λI − A) on both sides, the right hand side goes to zero, so we see that

v1, v2 ∈ N ((λI − A)2) and w1 ∈ N ((λI − A)3)
* In general, a generalized eigenvector is a vector such that (λI − A)nv = 0 where n ∈ N
* For each of the eigenvectors, we can create an entire chain of these generalized eigenvectors

– Now notice that if we rearrange the expressions we get Av1 = λv1 + e1, and Aw1 = λw1 + v1
(and so on for longer chains)

– Let P =
[
e1 v1 w1 e2 v2 e3

]
* We group together the chain related to e1, then the chain of e2 and so on

– AP =
[
λe1 λv1 + e1 λw1 + v1 λe2 λv2 + e2 λe3

]
= P


λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ 1 0
0 0 0 0 λ 0
0 0 0 0 0 λ

 = P J

– The resulting matrix J is the Jordan form, which is block diagonal; each of the blocks is known as
a Jordan block

* The number of Jordan blocks is always equal to the number of linearly independent eigenvectors
– Note there are multiple other forms that are possible, depending on how we choose to do the

generalized eigenvectors: we can have 3 Jordan blocks of size 2, 1 block of size 4 and 2 blocks of
size 1; as long as we only have 3 blocks, any combination is possible

* Also, in general we have multiple distinct eigenvalues, so we have a block for each distinct
eigenvalue, and then within each block we have a block for each linearly independent eigenvector
for that eigenvalue (and its chain)

– In this way we can generalize the notion of diagonalizability to matrices without a full set of
independent eigenvectors

Definition

The Jordan form of A ∈ Rn×n has the form

P −1AP = J =

Jλ1

. . .
Jλk


where k is the number of distinct eigenvalues, and each Jλi has form

Jλi
=

J1
λi

. . .
J li

λi

 ∈ Cmi×mi

where mi is the algebraic multiplicity of λi (number of times it appears as a root in the characteristic
equation) and li is its geometric multiplicity (number of linearly independent eigenvectors for λi); each
J j

λi
takes the form

J j
λi

=


λi 1

λi
. . .
. . . 1

λi


with λi repeated along the diagonal, and 1s above each λ.
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• With this we can now write eAt = P eJtP −1 (following the same proof as the case of normal diagonal-
ization for A)

– The block diagonal form means eJt =

e
Jλ1 t

. . .
eJλk

t



– Similarly eJλi
t =


eJ1

λi

. . .

e
J

li
λi


– J j

λi
t = (λiI + N) t where N is a matrix with 1s above the diagonal

– Therefore eJj
λi

t = eλiteNt

* N is a nilpotent matrix, so we can show that eventually the higher order terms in the infinite
series expansion for eNt all go to zero

– We can show that eNt has form


1 t · · · tp−1

(p− 1)!
. . . . . .

...
1 t

1

 ∈ Cp×p

* Here p is the size of the block J j
λi

(i.e. the size of the chain of generalized eigenvectors
corresponding to λi), which is not unique
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