Lecture 6, Sep 17, 2025

Computing the Matrix Exponential — Continued

Complex Eigenvalues
1
. 2 . . 2 . 2 .
e Consider A = EE the eigenvectors and eigenvalues are i 1]t and i1l
— Recall that eigenvector/eigenvalues always come in complex conjugate pairs, so for a 2x2 we can
take the conjugate to find the other one
— A has two distinct eigenvalues, so it is diagonalizable
e Direct calculation: et = PeAtP~!

—sint cost —sint
— Note we applied Euler’s formula
e Alternatively, we can define P and A differently to avoid dealing with complex numbers

sint + cost 2sint ]

— Denote v = [z E J (the other eigenvector is v
= 2 0
— Let P = [Re(v) Im(v)] = [ }

-1 1
0 1 . . . . .
10 (the imaginary parts of A1, A2 are in the off-diagonal entries)

— Let A = {
a b .
—b al| _ at| cos(bt) sin(bt)
I sin(bt) cos(bt)
* When we have complex eigenvalues, we see that this results in a rotation with a rate of decay

— We can show that e[

— Now we can compute PeAP1 and this leads to the same answer

Non-Diagonalizable Case — Jordan Forms

o Let A € R™™ ™ have less than n linearly independent eigenvectors, i.e. it is non-diagonalizable; in this
case we cannot form an invertible P with the eigenvectors

— We will introduce the notion of generalized eigenvectors which allow us to form P in this case
[od

o Recall that the characteristic polynomial of A is x 4(s) = det(sI — A) = H(s — i)™, where Z m;=n
i=1 i=1
— my is the algebraic multiplicity of the eigenvalue \;
o The minimal polynomial 1 4(s) is the polynomial of least degree such that ¥4(A) =0
— We can show that such a polynomial always exists

— The minimal polynomial has the form ¢4 (s) = H(s — i)' where I; < m;
i=1
* Note that normally s € C; when we substitute A into the polynomial we replace \; with \;T
* This is the same form as the characteristic polynomial but we may not have to repeat each
term as many times, i.e. some of the information in the characteristic polynomial is redundant
The I; are known as the geometric multiplicity of \;
— Each [; is also the number of linearly independent eigenvectors corresponding to A; (i.e. dim(N (A I—
A)) where N denotes null space)
+ Using this, we can decompose C" into o subspaces: C" = N( M I — A" @ - @ N\ I — A)lv
— o denotes a direct sum, VW = {v+w | v € V,w € W}, where it is required that VNW = {0}
« Example: Let A € R%*® have the characteristic polynomial z4(s) = (s — A)® (i.e. X repeated 6 times)
and 94 (s) = (s — A)? (i.e. only 3 independent eigenvectors)
- N(AMI — A) =span{ e, es, es } from the 3 independent eigenvectors



()\I — A)’Ul = —eq
()\I — A)’Ug = —€
(M — A)w; = —v; and all of ey, eq, €3, v1, Vo, wy are linearly independent
* Multiplying by (A — A) on both sides, the right hand side goes to zero, so we see that
v1,v2 € N((M — A)?) and w; € N (A — A)?)
* In general, a generalized eigenvector is a vector such that (AI — A)"v = 0 where n € N
* For each of the eigenvectors, we can create an entire chain of these generalized eigenvectors
— Now notice that if we rearrange the expressions we get Av; = \vy + eq, and Aw; = Aw; + v
(and so on for longer chains)
— Let P = [61 V1 w; €3 V2 63]
* We group together the chain related to e, then the chain of e; and so on

— Let vy, v2 be linearly independent solutions to { and w; be a solution to

A1 0 0 0 0]

0 X1 0 0 O

00 X 0 0 O
*AP:[/\el A +e; Awg+v; Aes vy +es )\63]:13 00 0 X 10 =PJ

00 0 0 X O

0 0 0 0 0 X

The resulting matrix J is the Jordan form, which is block diagonal; each of the blocks is known as
a Jordan block
* The number of Jordan blocks is always equal to the number of linearly independent eigenvectors
Note there are multiple other forms that are possible, depending on how we choose to do the
generalized eigenvectors: we can have 3 Jordan blocks of size 2, 1 block of size 4 and 2 blocks of
size 1; as long as we only have 3 blocks, any combination is possible
* Also, in general we have multiple distinct eigenvalues, so we have a block for each distinct
eigenvalue, and then within each block we have a block for each linearly independent eigenvector
for that eigenvalue (and its chain)
— In this way we can generalize the notion of diagonalizability to matrices without a full set of
independent eigenvectors

The Jordan form of A € R™*™ has the form

Jy,
P'AP=J=
Iy,

where £ is the number of distinct eigenvalues, and each Jy, has form

Jy,
J)\i — c (Cm,-xmi
J4

i

where m; is the algebraic multiplicity of \; (number of times it appears as a root in the characteristic
equation) and [; is its geometric multiplicity (number of linearly independent eigenvectors for \;); each
J3, takes the form

with \; repeated along the diagonal, and 1s above each A.




o With this we can now write e = Pe/tP~! (following the same proof as the case of normal diagonal-
ization for A)
eJ)\lt

— The block diagonal form means e’ =

— Similarly e/t =

- Ji_t = (MI + N)t where N is a matrix with 1s above the diagonal
— Therefore eJiit = elitelN?

* N is a nilpotent matrix, so we can show that eventually the higher order terms in the infinite

series expansion for V! all go to zero

tp—1
1 ¢

(p—1)!
~ We can show that e¥* has form e crxp

1 t
1

* Here p is the size of the block Ji (i.e. the size of the chain of generalized eigenvectors
corresponding to )\;), which is not unique
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