Lecture 5, Sep 12, 2025

Solving & = Ax
o Consider the autonomous (i.e. no control input) LTT system, € = Ax,x(0) = zg € R"; we will show
that this is solved by e
d
« We will show that EeAt =eMA
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— Note due to commutativity, we could’ve also taken out e’ on the right and get &eAt = AeAt

The differential equation & = Az, x(0) = o € R™ has the unique solution

x(t) = eAlay,t >0

e To show exis‘gience: d
- x(t) = dt( eAlxy) = &(eAt)mo = Aeflxy = Ax(t)
— x(0) = ®xy = Tzg = xo
o To show uniqueness, let y(t) be any other solution to the differential equation; we want to show that
y=x
d
- y(t) = Ay(t) and y(0) = zo

dt
— We want to show y(t) = ez, equivalently e Aly(t) = e~ AleAz, = x

— Notice that both sides are constants, so we can try taking the derivative and seeing what we get
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— Since e~ A'y(t) has a zero derivative, it must be constant, so e~y (t) = e "2y (0) = y(0), but

y(0) = xq since y is a solution to the differential equation
— Therefore we’ve shown e~ A'y(t) = @y and so y(t) = eAxp, and thus =(t) = y(t)



Computing the Matrix Exponential
Matrix Exponential by Laplace Transform
o Consider € = Az, z(0) = xyp € R", taking the Laplace transform:
- L{z} = L{Ax}

sX(s) —x(0) = AX (s)
sX(s) — AX(s) =x(0)
(sI — A)X (s) = xg
X(s) = (sI — A) tay
w(t) =L {(sI - A) "}z
« Because we know that the unique solution is () = eAtxq, eAtay = L7} {(sT—A)"'}a

~ Since this holds for all g, it must be that e?* = £~ {(sI — A)™'}

— Formally, to justify this, consider the case where o = e;, i.e. all zeros except 1 in the ith row;

substituting this into the equation we get that the ith column of the LHS must be equal to the ith
column of the RHS, so do this for all n columns

I

Matrix Exponential by Modal Decomposition (Eigenvectors & Eigenvalues)

o Recall that A € C is an eigenvalue of A if and only if det(A — A) = det(A — A\I) = 0; i.e. X are the
roots of the characteristic polynomial of A
— To find eigenvectors corresponding to each A, we find a basis for N'(AI — A) where A/ denotes the
null space

Definition

If there exists a nonsingular matrix P € C"*" such that P~'AP is diagonal, then A € R™*" is
diagonalizable.

Theorem

r
\

A € R™™™ is diagonalizable if and only if it has n linearly independent eigenvectors.

« Suppose A has n linearly independent eigenvectors, and let P = [vy -+ vy
A1
- AP =[Av; - Av,]=[\vi -+ AN, =P = PA
An
— Since P has all linearly independent columns it is invertible, therefore P"' AP = A

o Note A is diagonalizable if it has n distinct eigenvalues (but diagonalizability does not always imply
distinct eigenvalues); A is also diagonalizable if it is symmetric (the spectral theorem,)

Theorem

If A e R"™" is diagonalizable, then e = Pe®P~!, where

and \; are eigenvalues of A.

« We can show by induction that A" = (PAP~!)" = PA"P~!, then we can prove the above by
substituting this into the definition of the matrix exponential, and noting that taking a diagonal matrix



to a power is equivalent to taking each of the components to that power
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