Lecture 5, Sep 12, 2025

Solving $\dot{x} = Ax$

- Consider the autonomous (i.e. no control input) LTI system, $\dot{x} = Ax, x(0) = x_0 \in \mathbb{R}^n$; we will show
- that this is solved by $e^{\mathbf{A}t}\mathbf{x}_{0}$ We will show that $\frac{\mathrm{d}}{\mathrm{d}t}e^{\mathbf{A}t}=e^{\mathbf{A}t}\mathbf{A}$ $-\frac{\mathrm{d}}{\mathrm{d}t}e^{\mathbf{A}t}=\lim_{h\to 0}\frac{e^{\mathbf{A}(t+h)}-e^{\mathbf{A}t}}{h}$ $=\lim_{h\to 0}\frac{e^{\mathbf{A}t}e^{\mathbf{A}h}-e^{\mathbf{A}t}}{h}$ Since $\mathbf{A}h$ and $\mathbf{A}t$ commute $= \lim_{h \to 0} \frac{e^{\mathbf{A}t}(e^{\mathbf{A}h} - \mathbf{I})}{h}$ $=e^{\mathbf{A}t}\lim_{h\to 0}\frac{1}{h}\left(-\mathbf{I}+\sum_{k=0}^{\infty}\frac{(\mathbf{A}h)^k}{k!}\right)$ Matrix exponential definition $=e^{\mathbf{A}t}\lim_{h\to 0}\frac{1}{h}\left(-\mathbf{I}+\mathbf{I}+h\sum_{k=1}^{\infty}\frac{\mathbf{A}^kh^{k-1}}{k!}\right)$ Take out first term and factor h $=e^{\mathbf{A}t}\lim_{h\to 0}\sum_{k=1}^{\infty}\frac{\mathbf{A}^k\mathbf{h}^{k-1}}{k!}$ $=e^{\mathbf{A}t}\lim_{h\to 0}\left(\frac{\mathbf{A}h^0}{1!}+\sum_{k=2}^{\infty}\frac{\mathbf{A}^kh^{k-1}}{k!}\right)$ Take out first term
 - Note due to commutativity, we could've also taken out e^{At} on the right and get $\frac{d}{dt}e^{At} = Ae^{At}$

Theorem

The differential equation $\dot{x} = Ax, x(0) = x_0 \in \mathbb{R}^n$ has the unique solution

$$\boldsymbol{x}(t) = e^{\boldsymbol{A}t} \boldsymbol{x}_0, t \ge 0$$

- To show existence: $-\dot{\boldsymbol{x}}(t) = \frac{\mathrm{d}}{\mathrm{d}t}(e^{\boldsymbol{A}t}\boldsymbol{x}_0) = \frac{\mathrm{d}}{\mathrm{d}t}(e^{\boldsymbol{A}t})\boldsymbol{x}_0 = \boldsymbol{A}e^{\boldsymbol{A}t}\boldsymbol{x}_0 = \boldsymbol{A}\boldsymbol{x}(t)$ $-\boldsymbol{x}(0) = e^{\boldsymbol{0}}\boldsymbol{x}_0 = \boldsymbol{I}\boldsymbol{x}_0 = \boldsymbol{x}_0$
- To show uniqueness, let y(t) be any other solution to the differential equation; we want to show that y = x
 - $\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{y}(t) = \boldsymbol{A} \boldsymbol{y}(t)$ and $\boldsymbol{y}(0) = \boldsymbol{x}_0$
 - We want to show $\mathbf{y}(t) = e^{\mathbf{A}t}x_0$, equivalently $e^{-\mathbf{A}t}\mathbf{y}(t) = e^{-\mathbf{A}t}e^{\mathbf{A}t}\mathbf{x}_0 = \mathbf{x}_0$ Notice that both sides are constants, so we can try taking the derivative and seeing what we get

 - $-\frac{\mathrm{d}}{\mathrm{d}t}e^{-\mathbf{A}t}\mathbf{y}(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t}e^{-\mathbf{A}t}\right)\mathbf{y}(t) + e^{-\mathbf{A}t}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y}(t)$ $=-e^{-\mathbf{A}t}\mathbf{A}\mathbf{y}(t)+e^{-\mathbf{A}t}\mathbf{A}\mathbf{y}(t)$ $= -e^{\mathbf{A}t} \left(-\mathbf{A}\mathbf{y}(t) + \mathbf{A}\mathbf{y}(t) \right)$
 - Since $e^{-At}y(t)$ has a zero derivative, it must be constant, so $e^{-At}y(t) = e^{-0A}y(0) = y(0)$, but $y(0) = x_0$ since y is a solution to the differential equation
 - Therefore we've shown $e^{-\mathbf{A}t}\mathbf{y}(t) = \mathbf{x}_0$ and so $\mathbf{y}(t) = e^{\mathbf{A}t}\mathbf{x}_0$, and thus $\mathbf{x}(t) = \mathbf{y}(t)$

Computing the Matrix Exponential

Matrix Exponential by Laplace Transform

• Consider $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x}(0) = \boldsymbol{x}_0 \in \mathbb{R}^n$, taking the Laplace transform:

$$\mathcal{L} \{ \dot{\boldsymbol{x}} \} = \mathcal{L} \{ \boldsymbol{A} \boldsymbol{x} \}
\Longrightarrow s \boldsymbol{X}(s) - \boldsymbol{x}(0) = \boldsymbol{A} \boldsymbol{X}(s)$$

$$\implies sX(s) - AX(s) = x(0)$$

$$\implies (s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{x}_0$$

$$\implies \boldsymbol{X}(s) = (s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{x}_0$$

$$\implies \boldsymbol{x}(t) = \mathcal{L}^{-1} \left\{ (s\boldsymbol{I} - \boldsymbol{A})^{-1} \right\} \boldsymbol{x}_0$$

- Because we know that the unique solution is $x(t) = e^{At}x_0$, $e^{At}x_0 = \mathcal{L}^{-1}\{(sI A)^{-1}\}x_0$
 - Since this holds for all x_0 , it must be that $e^{At} = \mathcal{L}^{-1}\left\{(sI A)^{-1}\right\}$
 - Formally, to justify this, consider the case where $x_0 = e_i$, i.e. all zeros except 1 in the *i*th row; substituting this into the equation we get that the *i*th column of the LHS must be equal to the *i*th column of the RHS, so do this for all n columns

Matrix Exponential by Modal Decomposition (Eigenvectors & Eigenvalues)

- Recall that $\lambda \in \mathbb{C}$ is an eigenvalue of \boldsymbol{A} if and only if $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = \det(\boldsymbol{A} \lambda \boldsymbol{I}) = 0$; i.e. λ are the roots of the characteristic polynomial of \boldsymbol{A}
 - To find eigenvectors corresponding to each λ , we find a basis for $\mathcal{N}(\lambda I A)$ where \mathcal{N} denotes the null space

Definition

If there exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that $P^{-1}AP$ is diagonal, then $A \in \mathbb{R}^{n \times n}$ is diagonalizable.

Theorem

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors.

• Suppose $m{A}$ has n linearly independent eigenvectors, and let $m{P} = egin{bmatrix} m{v}_1 & \cdots & m{v}_n \end{bmatrix}$

Appears
$$m{A}$$
 has $m{u}$ integrated decreases, and let $m{I} = m{[v_1 & \cdots & Av_n]} = m{A} m{v}_1 = m{[\lambda_1 & \cdots & \lambda_n v_n]} = m{P} m{\lambda}_1 & \cdots & m{\lambda}_n \end{bmatrix} = m{P} m{\Lambda}_1$

- Since P has all linearly independent columns it is invertible, therefore $P^{-1}AP = \Lambda$
- Note A is diagonalizable if it has n distinct eigenvalues (but diagonalizability does not always imply distinct eigenvalues); A is also diagonalizable if it is symmetric (the *spectral theorem*)

Theorem

If $A \in \mathbb{R}^{n \times n}$ is diagonalizable, then $e^A = Pe^{\Lambda}P^{-1}$, where

$$e^{\mathbf{\Lambda}} = \begin{bmatrix} e^{\lambda_1} & & \\ & \ddots & \\ & & e^{\lambda_n} \end{bmatrix}$$

and λ_i are eigenvalues of \boldsymbol{A} .

• We can show by induction that $A^n = (P\Lambda P^{-1})^n = P\Lambda^n P^{-1}$, then we can prove the above by substituting this into the definition of the matrix exponential, and noting that taking a diagonal matrix

2

to a power is equivalent to taking each of the components to that power