
Lecture 5, Sep 12, 2025
Solving ẋ = Ax

• Consider the autonomous (i.e. no control input) LTI system, ẋ = Ax, x(0) = x0 ∈ Rn; we will show
that this is solved by eAtx0

• We will show that d
dt

eAt = eAtA

– d
dt

eAt = lim
h→0

eA(t+h) − eAt

h

= lim
h→0

eAteAh − eAt

h
Since Ah and At commute

= lim
h→0

eAt(eAh − I)
h

= eAt lim
h→0

1
h

(
−I +

∞∑
k=0

(Ah)k

k!

)
Matrix exponential definition

= eAt lim
h→0

1
h

(
−I + I + h

∞∑
k=1

Akhk−1

k!

)
Take out first term and factor h

= eAt lim
h→0

∞∑
k=1

Akhk−1

k!

= eAt lim
h→0

(
Ah0

1! +
∞∑

k=2

Akhk−1

k!

)
Take out first term

= eAtA

– Note due to commutativity, we could’ve also taken out eAt on the right and get d
dt

eAt = AeAt

Theorem

The differential equation ẋ = Ax, x(0) = x0 ∈ Rn has the unique solution

x(t) = eAtx0, t ≥ 0

• To show existence:
– ẋ(t) = d

dt
(eAtx0) = d

dt
(eAt)x0 = AeAtx0 = Ax(t)

– x(0) = e0x0 = Ix0 = x0
• To show uniqueness, let y(t) be any other solution to the differential equation; we want to show that

y = x

– d
dt

y(t) = Ay(t) and y(0) = x0

– We want to show y(t) = eAtx0, equivalently e−Aty(t) = e−AteAtx0 = x0
– Notice that both sides are constants, so we can try taking the derivative and seeing what we get

– d
dt

e−Aty(t) =
(

d
dt

e−At

)
y(t) + e−At d

dt
y(t)

= −e−AtAy(t) + e−AtAy(t)
= −eAt (−Ay(t) + Ay(t))
= 0

– Since e−Aty(t) has a zero derivative, it must be constant, so e−Aty(t) = e−0Ay(0) = y(0), but
y(0) = x0 since y is a solution to the differential equation

– Therefore we’ve shown e−Aty(t) = x0 and so y(t) = eAtx0, and thus x(t) = y(t)
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Computing the Matrix Exponential
Matrix Exponential by Laplace Transform

• Consider ẋ = Ax, x(0) = x0 ∈ Rn, taking the Laplace transform:
– L {ẋ} = L {Ax}

=⇒ sX(s) − x(0) = AX(s)
=⇒ sX(s) − AX(s) = x(0)
=⇒ (sI − A)X(s) = x0

=⇒ X(s) = (sI − A)−1x0

=⇒ x(t) = L−1 {(sI − A)−1}x0
• Because we know that the unique solution is x(t) = eAtx0, eAtx0 = L−1 {(sI − A)−1}x0

– Since this holds for all x0, it must be that eAt = L−1 {(sI − A)−1}
– Formally, to justify this, consider the case where x0 = ei, i.e. all zeros except 1 in the ith row;

substituting this into the equation we get that the ith column of the LHS must be equal to the ith
column of the RHS, so do this for all n columns

Matrix Exponential by Modal Decomposition (Eigenvectors & Eigenvalues)

• Recall that λ ∈ C is an eigenvalue of A if and only if det(λI − A) = det(A − λI) = 0; i.e. λ are the
roots of the characteristic polynomial of A

– To find eigenvectors corresponding to each λ, we find a basis for N (λI − A) where N denotes the
null space

Definition

If there exists a nonsingular matrix P ∈ Cn×n such that P −1AP is diagonal, then A ∈ Rn×n is
diagonalizable.

Theorem

A ∈ Rn×n is diagonalizable if and only if it has n linearly independent eigenvectors.

• Suppose A has n linearly independent eigenvectors, and let P =
[
v1 · · · vn

]
– AP =

[
Av1 · · · Avn

]
=
[
λ1v1 · · · λnvn

]
= P

λ1
. . .

λn

 = P Λ

– Since P has all linearly independent columns it is invertible, therefore P −1AP = Λ
• Note A is diagonalizable if it has n distinct eigenvalues (but diagonalizability does not always imply

distinct eigenvalues); A is also diagonalizable if it is symmetric (the spectral theorem)

Theorem

If A ∈ Rn×n is diagonalizable, then eA = P eΛP −1, where

eΛ =

eλ1

. . .
eλn


and λi are eigenvalues of A.

• We can show by induction that An = (P ΛP −1)n = P ΛnP −1, then we can prove the above by
substituting this into the definition of the matrix exponential, and noting that taking a diagonal matrix
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to a power is equivalent to taking each of the components to that power
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