
Lecture 18, Nov 14, 2025
Observability, State Estimation, and Output Feedback Control

• Previously we discussed how to design controllers to stabilize a system given the full system state x;
however in practice we rarely have the full system state, so we have to estimate x using the system
output y

– Given y(t), u(t) for 0 ≤ t ≤ T , we want to estimate x(t)

• Recall that the solution is x(t) = eAtx0 +
ˆ t

0
eA(t−τ)Bu(τ)dτ

– The output is then y(t) = CeAtx0 +
ˆ t

0
CeA(t−τ)Bu(τ)dτ + Du(t)

– Notice that we know every quantity except x0, so we can solve for CeAtx0

Definition

For an LTI system, given y(t), u(t), 0 ≤ t ≤ T , the State Estimation Problem is to estimate x(t) for
0 ≤ t ≤ T . Equivalently, given CeAtx0, 0 ≤ t ≤ T , estimate x0.

• Therefore an equivalent problem is: given CeAtx0 for 0 ≤ t ≤ T , estimate x0
– Let Lo : Rn 7→ C([0, ∞],Rp) such that Lo(x0) = CeAtx0, i.e. a function mapping initial conditions

to functions
* This is a mapping that goes from Rn to continuous functions of time outputting Rp

* Note this is a linear map, but it does not have a matrix representation because the output
space is infinite dimensional

– Now given Lo(x0), under what conditions on Lo can we recover x0?
• Given vector spaces X , Y over the field R, and let f : X 7→ Y be a linear map; f(x) = y has a unique

solution if and only if N (f) contains only the zero vector, i.e. f is injective
– Therefore, obtaining x0 is possible if and only if Lo is injective (N (Lo) contains only the zero

vector)
– Note in this case, a function in N (Lo) needs to be zero for all time

Theorem

Let f : X 7→ Y be a linear map and let y ∈ R(f); then f(x) = y has a unique solution if and only if
N (f) = { 0̄ }, i.e. the null space is trivial. This is equivalent to f being injective.

• Proof:
– Forward direction: take contrapositive: N (f) ̸= { 0̄ } =⇒ f(x) = y does not have a unique

solution
* Let x ∈ X be a solution, i.e. f(x) = y
* Let u ∈ N (f) and u ̸= 0̄, so that f(u) = 0̄
* Then f(x + u) = f(x) + f(u) = y + 0̄ = y
* Therefore both x and x + u are solutions, and so the solution is not unique

– Reverse direction: again take the contrapositive: f(x) = y does not have a unique solution
=⇒ N (f) ̸= { 0̄ }

* Let x1 ̸= x2 and f(x1) = f(x2)
* Then 0̄ = f(x1) = f(x2) = f(x1 − x2)
* Therefore x1 − x2 ∈ N (f), and x1 − x2 ̸= 0̄, so N (f) is nontrivial

• Note the relation between controllability and observability:
– In controllability:

* Lc(u(·)) =
ˆ T

0
eA(T −τ)Bu(τ) dτ

* We want Lc to be surjective, so that we can find an input to command the system to any
state we want
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* We form Qc from (A, B) and use the rank of this matrix to test for controllability
– In observability:

* Lo(x0) = CeAtx0
* We want Lo to be injective, so that for any output we want to be able to find a unique initial

condition (and therefore system state)
* Likewise, we will formulate a Qo from (A, C) and check its rank

Definition

The system (A, B, C, D) is observable if Lo : Rn 7→ C([0, ∞],Rp) is injective, or equivalently N (Lo) =
{ 0̄ }, where Lo(x0) = CeAtx0.

• Example: consider ẋ =
[
1 0
1 1

]
x and y =

[
1 0

]
x

– We have ẋ1(t) = x1(t) =⇒ x1(t) = etx1(0)
– y(t) = x1(t) = etx1(0)
– Intuitively we know this system is not observable since we don’t have any information about x2
– Consider the case of x2(0) = 1 and x2(0) = 2; in both cases we have the exact same y(t) as long as

x1(0) is the same, so we can’t recover x2(0) and therefore the system is not observable

– In this case,
[
0
1

]
and

[
0
2

]
are both in N (Lo), since both of them result in a zero CeAtx0 (which is

equivalent to y(t) in this case)
• Practically speaking, if we discover that our system is not observable or detectable, it means that we

either need to add more sensors to measure more outputs, or reduce the model complexity, because
this indicates that our model is overly complex and contains unuseful states that we cannot determine
anyway

Theorem

Let the observability matrix be defined as

Qo =


C

CA
...

CAn−1


The observability matrix has the same null space as Lo, i.e. N (Lo) = N (Qo), therefore observability
is equivalent to N (Qo) = { 0 }, i.e. rank(Qo) = n.

• Proof:
– N (Qo) ⊆ N (Lo)

* Let x ∈ N (Qo), then Cx = CAx = · · · = CAn−1x = 0
* We want to show that Lo(x) = CeAtx = 0

* CeAtx = C

( ∞∑
k=0

Ak

k!

)
x

=
∞∑

k=0

1
k!CAkx

* We already know that CAkx = 0 for k = 0, . . . , n − 1 because x ∈ N (Qo)
* By Cayley-Hamilton, any higher power of A can be expressed as a linear combination of Ai

for i = 0, . . . , n − 1, so we can show that CAkx = 0 holds for all k by an inductive proof
* Therefore CeAtx and x ∈ N (Lo)

– N (Lo) ⊆ N (Qo)
* Let x ∈ (Lo), then CeAtx = 0 for all t
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* Set t = 0 to get Cx = 0
* Take the derivative, d

dt
(CeAtx) = CAeAtx = 0, and evaluate at t = 0 again to get CAx = 0

* Therefore we can show that CAix for i = 0, . . . , n − 1, and therefore


C

CA
...

CAn−1

x = 0

Kalman Decomposition for Observability

• Similar to the controllability case, we can show that N (Qo) is A-invariant, and N (Qo) ⊆ N (C)
– Let x ∈ N (Qo), then Cx = CAx = · · · = CAn−1x = 0
– Consider QoAx, this has rows CAx, . . . , CAnx; we already know that CAkx = 0 up to k = n−1
– For CAnx, use Cayley-Hamilton to expand An as a sum of lower powers, then we can show

CAnx = 0
– Therefore x ∈ N (Qo) =⇒ Ax ∈ N (Qo) and so N (Qo) is A-invariant
– Also, since Cx = 0 from the first row of Qox = 0, x ∈ N (C), so N (Qo) ⊆ N (C)

• By the representation theorem, we can find a coordinate transformation P by taking the first k =
n − rank(Qo) vectors as a basis for N (Qo), then the rest such that P is invertible, and let z = P −1x

• Then we get ż =
[
ż1

ż2

]
=
[
Â11 Â12

0 Â22

]
z +

[
B̂1
B̂2

]
, y =

[
0 Ĉ2

]
z + Du

– The subsystem ż2 = Â22z2 + B̂2u, y = Ĉ2z2 + Du is observable, while the subsystem pertaining
to z1 is unobservable

Kalman Decomposition for Controllability and Observability

• Now we will combine what we know about observability and controllability
• Lemma: The intersection of two A-invariant subspaces is also A-invariant
• Consider a system that is neither controllable nor observable

– Let Vcō = R(Qc) ∩ N (Qo) be the controllable but not observable subspace; let its dimension be
ncō

* This is A-invariant because it’s the intersection of two A-invariant subspaces
– Let Vco = R(Qc) \ Vcō be the controllable and observable subspace; let its dimension be nco

* Vcō ⊕ Vco = R(Qc)
– Let Vc̄ō = N (Qo) \ Vcō be the not controllable and not observable subspace; let its dimension be

nc̄ō

* Vcō ⊕ Vc̄ō = N (Qo)
– Let Vc̄o = Rn \ (Vcō ⊕ Vco ⊕ Vc̄ō) be the not controllable but observable subspace; let its dimension

be nc̄o

* Note that the direct sum of all subspaces is Rn

• Let the matrix P contain the basis for Vcō, Vco, Vc̄ō, Vc̄o in this exact order
– The first ncō + nco columns form a basis for R(Qc)

• Let z =


z1

z2

z3

z4

 = P −1x, where each of the 4 components corresponds to the 4 subspaces in the order

above

• Applying the representation theorem, ż =


Âcō ∗ ∗ ∗

0 Âco 0 ∗
0 0 Âc̄ō ∗
0 0 0 Âc̄o




z1

z2

z3

z4

+


B̂cō

B̂co

0
0

u

y =
[
0 Ĉco 0 Ĉc̄o

]
z + Du

– The entries marked with ∗ are nonzero in general, which don’t affect our analysis
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– We first apply the Kalman Decomposition for controllability, which gives us Â11 ∈
R(ncō+nco)×(ncō+nco) and so on

– We can verify the zero entries by checking which subspace is contained in the others
• If we start in the controllable subspace, i.e. x(0) ∈ R(Qc), then z3(t) = z4(t) = 0 for all t

– x(0) is a linear combination of the basis vectors of Vcō and Vco, since those two subspaces together
make up R(Qc); it doesn’t have any component in the basis vectors of the other two subspaces,
since those do not intersect R(Qc)

– From x(0) = P z(0) we see that z3(0) = z4(0) = 0 as a result, and this gives ż3 = ż4 = 0 for all
time

– Then
[
ż1

ż2

]
=
[
Âcō ∗

0 Âco

] [
z1

z2

]
+
[
B̂cō

B̂co

]
u

y =
[
0 Ĉco

] [z1

z2

]
+ Du

* This subsystem is controllable (since we get it from the Kalman decomposition for controlla-
bility) but not observable

* From this we can extract the controllable and observable subsystem ż2 = Âcoz2 + B̂cou

y = Ĉcoz2 + Du

• The observable subsystem is
[
ż2

ż4

]
=
[
Âco ∗

0 Âc̄o

] [
z2

z4

]
+ B̂cou

y =
[
Ĉco Ĉc̄o

] [z2

z4

]
+ Du

Theorem

The system (A, B, C, D) has the same transfer function as the controllable and observable subsystem,
(Âco, B̂co, Ĉco, D̂), which is known as the minimal realization of the transfer function, as it is the
smallest (lowest number of states) system that results in this transfer function.

• Let G : C 7→ Rp×m be a transfer function matrix, and let (A, B, C, D) be any state space realization
of the same system and (Âco, B̂co, Ĉco, D̂) be the controllable and observable subsystem

– If (A, B, C, D) is uncontrollable or unobservable, then the minimal realization has k < n states,
and so it will have k poles

– The transfer function G will also have k poles, and therefore there are n − k pole-zero cancellations

Note

Key insight: If a transfer function has one or more pole-zero cancellations, then its state space
realization is either uncontrollable or unobservable.

• Example: Consider G(s) = s + 1
(s + 1)(s + 3) , which has one pole-zero cancellation

– Using the uncancelled transfer function, one choice of states is x =
[

y
ẏ − u

]
, we get the realization

A =
[

0 1
−3 −4

]
, B =

[
1

−3

]
, C =

[
1 0

]
* Qc =

[
1 −3

−3 9

]
, which has rank 1, so the system is not controllable

– Using G(s) = 1
s + 3, choose x = y, which results in A = −3, B = 1, C = 1

* This is now the minimal realization of the system
* Qc = B = 1 so clearly this system is controllable
* Qo = C = 1 so the system is observable as well
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State Observers

• Given a control system (A, B, C, D), we want to design an observer, which estimates (“observes”) the
state x(t), given the known y(t) and u(t)

• The observer predicts a state estimate x̂ as ˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂ + Du

– The observer is an LTI system itself which tries to simulate the system dynamics and corrects its
estimate based on observations

– L is a matrix to be designed, which corrects the estimated state based on the difference of the
predicted output versus the actual measured output

• Define the estimation error e = x − x̂, which we can show to have dynamics ė = (A − LC)e
– Therefore we just need to choose L such that this system is asymptotically stable, i.e. make the

eigenvalues of A − LC have negative real part

Definition

The state estimation problem is to find a matrix L for a system (A, B, C, D) such that the eigenvalues
of A − LC all have real part less than zero, so the estimation error is asymptotically stable.

A system is called detectable if the state estimation problem is solvable.

Theorem

A system (C, A) is detectable if and only if (AT , CT ) is stabilizable.

• This is because the eigenvalues of A − LC is the same as (A − LC)T = AT − CT LT , so if we can find
K to stabilize (AT , CT ), then taking L = KT solves the state estimation problem

Theorem

Duality Theorem: Controllability and detectability are duals, i.e.
1. (C, A) is observable if and only if (AT , CT ) is controllable.
2. (C, A) is detectable if and only if (AT , CT ) is stabilizable.

(AT , CT ) is known as the dual system of (C, A).

• We can prove this by noticing the similarity between Qo and QT
c ; if we take (AT , CT ) and form its

controllability matrix, we get QT
o , which has the same rank as Qo, so the system is observable if and

only if its dual system is controllable

Theorem

PBH Test for Detectability: (C, A) is detectable if and only if for all eigenvalues λ of A,

Re(λ) ≥ 0 =⇒ rank
([

λI − A
C

])
= n

• This is analogous to applying the PBH test for stabilizability to the dual system
• Proof:

– (C, A) is detectable if and only if (AT , CT ) is stabilizable, which is true if and only if for all
eigenvalues of AT , Re(λ) ≥ 0 =⇒ rank(

[
λI − AT CT

]
) = n (PBH stabilizability test)

– Since transpose does not change rank or eigenvalues, this is the same as rank
([

λI − A
C

])
= n

• Suppose (C, A) is not observable, then by applying the Kalman decomposition we get

5



ż =
[
Â11 Â12

0 Â22

]
z +

[
B̂1
B̂2

]
u and y =

[
0 Ĉ1

]
z + Du where (Ĉ1, Â22) is the observable

subsystem

• Let L̂ =
[
L̂1
L̂2

]
then Â − L̂Ĉ =

[
Â11 Â12 − L̂1Ĉ1

0 Â22 − L̂2Ĉ1

]
– This shows that we can affect the eigenvalues of the Â22 subsystem but not the Â11 subsystem
– The eigenvalues of Â11 are the unobservable eigenvalues, and the eigenvalues of Â22 are the

observable eigenvalues; together these make up all eigenvalues of A
– Just like the controllability case, by the PBH test, an eigenvalue is unobservable if and only if

rank
([

λI − A
C

])
< n, and observable if and only if rank

([
λI − A

C

])
= n

Output Feedback Stabilization

• Putting it all together, how do we stabilize a system if we only know the output y(t) and input u(t)
but not the state?

• Given a stabilizable and detectable system, our goal is to design K and L such that the eigenvalues
of (A + BK) and (A − LC) have real part less than zero, then we can implement the control law
u = Kx̂ and observer ˙̂x = Ax̂ + Bu + L(y − ŷ)

ŷ = Cx̂ + Du
• We will show that this indeed results in an asymptotically stable system

– Let e = x − x̂
– ẋ = Ax + Bu

= Ax + BKx̂ + BKx − BKx

= Ax + BKx − BK(x − x̂)
= (A + BK)x − BKe

– Also, ė = (A − LC)e (shown previously)

– Therefore
[
ẋ
ė

]
=
[
A + BK −BK

0 A − LC

] [
x
e

]
, so if we have the eigenvalues of (A + BK) and

(A − LC) both negative, then the overall system is stable

Theorem

Separation Principle: To stabilize a system (A, B, C, D) through output feedback, we can design
separately an asymptotically stable state feedback controller to place the eigenvalues of A + BK, and
an asymptotically stable observer to place the eigenvalues of A−LC, then using the observer estimate
for state feedback. The resulting control law u = Kx̂ makes the system asymptotically stable.
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