Lecture 18, Nov 14, 2025

Observability, State Estimation, and Output Feedback Control

e Previously we discussed how to design controllers to stabilize a system given the full system state x;
however in practice we rarely have the full system state, so we have to estimate & using the system
output y

— Given y(t),u(t) for 0 <t < T, we want to estimate x(t)

t
« Recall that the solution is x(t) = eAtxq + / eA=7) Bu(r)dr
0

t
— The output is then y(t) = CeAlxy + / CeA'=") Bu(7)dr + Du(t)
0

— Notice that we know every quantity except g, so we can solve for Cex

For an LTT system, given y(t), u(t),0 <t < T, the State Estimation Problem is to estimate x(t) for
0 <t <T. Equivalently, given CeAta:O, 0 <t <T, estimate xq.

e Therefore an equivalent problem is: given Ce?tay for 0 <t < T, estimate xo
— Let L, : R + C([0, 00, R?) such that L,(xg) = Ce?'axy, i.e. a function mapping initial conditions
to functions
* This is a mapping that goes from R™ to continuous functions of time outputting R?
* Note this is a linear map, but it does not have a matrix representation because the output
space is infinite dimensional
— Now given L,(x¢), under what conditions on L, can we recover xo?
» Given vector spaces X, over the field R, and let f : X — ) be a linear map; f(x) = y has a unique
solution if and only if A(f) contains only the zero vector, i.e. f is injective
— Therefore, obtaining xg is possible if and only if L, is injective (M(L,) contains only the zero
vector)
— Note in this case, a function in N (L,) needs to be zero for all time

Let f: X — Y be a linear map and let y € R(f); then f(x) = y has a unique solution if and only if
N(f) ={0}, i.e. the null space is trivial. This is equivalent to f being injective.

e Proof:
— Forward direction: take contrapositive: N(f) # {0} = f(x) = y does not have a unique
solution
* Let & € X be a solution, i.e. f(x) =y
* Let uw € N(f) and u # 0, so that f(u) =0
* Then f(x+u) = f(x)+ f(u)=y+0=1y
* Therefore both & and x + u are solutions, and so the solution is not unique
— Reverse direction: again take the contrapositive: f(x) = y does not have a unique solution
= N(f) #{0}
* Let @1 # a2 and f(x1) = f(x2)
* Then 0 = f(z1) = f(x2) = f(®1 —®2)
* Therefore €1 — x2 € N(f), and &1 — @2 # 0, so N(f) is nontrivial
e Note the relation between controllability and observability:
— In controllability:

* Lo(u(r) = / ' AT Bu(r) dr

* We want L. to be surjective, so that we can find an input to command the system to any
state we want



* We form Q. from (A, B) and use the rank of this matrix to test for controllability
— In observability:
* Lo(wo) = CeAtiBo
* We want L, to be injective, so that for any output we want to be able to find a unique initial
condition (and therefore system state)
* Likewise, we will formulate a @, from (A, C) and check its rank

The system (A, B, C, D) is observable if L, : R" + C([0, 00|, R?) is injective, or equivalently N'(L,) =
{0}, where L,(zo) = Cetay.

« Example: consider & = E ﬂ zandy=[1 O]z

We have 31 (t) = z1(t) = x1(t) = e'21(0)

— y(t) = w1 (t) = ', (0)

— Intuitively we know this system is not observable since we don’t have any information about xs
Consider the case of £2(0) = 1 and z2(0) = 2; in both cases we have the exact same y(t) as long as
21(0) is the same, so we can’t recover x2(0) and therefore the system is not observable

— In this case, [(1)] and [g} are both in NV'(L,), since both of them result in a zero CeAzy (which is

equivalent to y(¢) in this case)

o Practically speaking, if we discover that our system is not observable or detectable, it means that we
either need to add more sensors to measure more outputs, or reduce the model complexity, because
this indicates that our model is overly complex and contains unuseful states that we cannot determine
anyway

Let the observability matriz be defined as

C
CA
Qo =

ca™!

The observability matrix has the same null space as L,, i.e. N(L,) = N(Q,), therefore observability
is equivalent to N (Q,) = {0}, i.e. rank(Q,) = n.

e Proof:
- N(QO) c N(LO)
* Let ¢ € N(Q,), then Cx =CAz=---=CA" 'z =0
* We want to show that L,(x) = CeAz =0

* Cefte = C ZF T

k=0
= 1
= Z —CA*z
k!
k=0
* We already know that CA*z =0 for k =0,...,n — 1 because = € N(Q,) '
* By Cayley-Hamilton, any higher power of A can be expressed as a linear combination of A°
for i =0,...,n—1, so we can show that CA*x = 0 holds for all k£ by an inductive proof
* Therefore CeA*x and = € N'(L,)

- N(LO) c N(QO)
* Let @ € (L,), then CeAlz = 0 for all ¢



* Sett=0toget Cx=0
d
* Take the derivative, — (CeA'z) = CAeA'x = 0, and evaluate at t = 0 again to get CAz =0

dt
C
. CA
* Therefore we can show that CA'x for 1 = 0,...,n — 1, and therefore . x=0
CcA" !

Kalman Decomposition for Observability

o Similar to the controllability case, we can show that M(Q,) is A-invariant, and N (Q,) C N(C)
~ Let x € N(Q,), then Cx =CAx =---=CA" 'z =0
— Consider Q,Ax, this has rows C Az, ..., CA"x; we already know that CA*z =0uptok =n—1
— For CA"x, use Cayley-Hamilton to expand A™ as a sum of lower powers, then we can show
CA"x =0
— Therefore x € N(Q,) = Az € N(Q,) and so N (Q,) is A-invariant
— Also, since Cz = 0 from the first row of Q,z =0, € N'(C), so N(Q,) C N (C)
e By the representation theorem, we can find a coordinate transformation P by taking the first k =
n — rank(Q,) vectors as a basis for N'(Q,), then the rest such that P is invertible, and let z = P~ 'x
-1 4 2 -
e Then we get 2 = [;2} = {AOH gij z+ [gj ,y=[0 Cs]z+Du
— The subsystem 22 = Agz® + Bgu, Yy = Co2? + Du is observable, while the subsystem pertaining
to z! is unobservable

Kalman Decomposition for Controllability and Observability

e Now we will combine what we know about observability and controllability
e Lemma: The intersection of two A-invariant subspaces is also A-invariant
e Consider a system that is neither controllable nor observable
— Let V.5 = R(Q.) NN(Q,) be the controllable but not observable subspace; let its dimension be
Neo
* This is A-invariant because it’s the intersection of two A-invariant subspaces
— Let Voo = R(Q.) \ V.5 be the controllable and observable subspace; let its dimension be n,
* Vca @ Vco = R(Qc)
— Let Vz5 = N(Q,) \ Ves be the not controllable and not observable subspace; let its dimension be
Neo
* Vo ©Veo = N(Q,)
— Let Vzo = R"\ (V5 @ Veo @ Va5) be the not controllable but observable subspace; let its dimension
be ngz,
* Note that the direct sum of all subspaces is R"
e Let the matrix P contain the basis for V.5, Veo, Vzs, Vzo in this exact order

— The first n.s + neo columns form a basis for R(Q.)
1

z
2
o Let z= jg = P~ 'z, where each of the 4 components corresponds to the 4 subspaces in the order
o4
above R .
Acé A* * * Z; Bca
. ) . 0 A 0 * z B
o Applying the representation theorem, z = o K
pplying p 0 0 A o« ] I
0 0 0 Al # 0

y=[0 C., 0 Cuz+Du
— The entries marked with % are nonzero in general, which don’t affect our analysis



— We first apply the Kalman Decomposition for controllability, which gives us A, €
R(Peatnco) X (neatneo) and so on

— We can verify the zero entries by checking which subspace is contained in the others

o If we start in the controllable subspace, i.e. £(0) € R(Q.), then 2z3(t) = z*(t) = 0 for all ¢

— x(0) is a linear combination of the basis vectors of V.5 and V., since those two subspaces together
make up R(Q.); it doesn’t have any component in the basis vectors of the other two subspaces,
since those do not intersect R(Q.)

— From x(0) = Pz(0) we see that 23(0) = 2%(0) = 0 as a result, and this gives 23 = 2% = 0 for all

time ) . ) R
P A * | |z B;
— Then [zQ] = [ 0 ACJ LQ} + {BCJ u
N zl
Y= [O Cco] |:z2:| + Du

* This subsystem is controllable (since we get it from the Kalman decomposition for controlla-
bility) but not observable
* From this we can extract the controllable and observable subsystem 22 = A2+ B.,u

Y= coz2 + Du
.2 p 2
o The observable subsystem is {zél] = [AOCO A* [24} + B.,u

N N z2
y=[Ceo Cs M + Du

The system (A, B, C, D) has the same transfer function as the controllable and observable subsystem,
(Acoy Beo, Cep, D), which is known as the minimal realization of the transfer function, as it is the
smallest (lowest number of states) system that results in this transfer function.

o Let G : C+— RP*™ be a transfer function matrix, and let (A, B, C, D) be any state space realization
of the same system and (ACO, BCO, C’co, ﬁ) be the controllable and observable subsystem
- If (A, B,C, D) is uncontrollable or unobservable, then the minimal realization has k < n states,
and so it will have k poles
— The transfer function G will also have k poles, and therefore there are n — k pole-zero cancellations

Key insight: If a transfer function has one or more pole-zero cancellations, then its state space
realization is either uncontrollable or unobservable.

s+1
(s+1)(s+3)

— Using the uncancelled transfer function, one choice of states is * = LJ

a=|f L= Y]e=n g

* Q= [_13 93} , which has rank 1, so the system is not controllable

o Example: Consider G(s) = , which has one pole-zero cancellation

g UJ , we get the realization

1
— Using G(s) = 513

* This is now the minimal realization of the system
* Q. = B =1 so clearly this system is controllable
* @, = C =1 so the system is observable as well

, choose © = y, which resultsin A =-3,B=1,C=1



State Observers

o Given a control system (A, B,C, D), we want to design an observer, which estimates (“observes”) the
state x(t), given the known y(t) and wu(t)
o The observer predicts a state estimate & as @ = A& + Bu + Ly—19)
y=Cz%+ Du
— The observer is an LTI system itself which tries to simulate the system dynamics and corrects its
estimate based on observations
— L is a matrix to be designed, which corrects the estimated state based on the difference of the
predicted output versus the actual measured output
o Define the estimation error e = & — &, which we can show to have dynamics é = (A — LC)e
— Therefore we just need to choose L such that this system is asymptotically stable, i.e. make the
eigenvalues of A — LC' have negative real part

The state estimation problem is to find a matrix L for a system (A, B, C, D) such that the eigenvalues
of A — LC all have real part less than zero, so the estimation error is asymptotically stable.

A system is called detectable if the state estimation problem is solvable.

A system (C, A) is detectable if and only if (AT, CT) is stabilizable.

o This is because the eigenvalues of A — LC is the same as (A — LC)" = AT — CTL" | so if we can find
K to stabilize (AT, CT), then taking L = K7 solves the state estimation problem

Duality Theorem: Controllability and detectability are duals, i.e.
1. (C, A) is observable if and only if (A, C7) is controllable.
2. (C, A) is detectable if and only if (A7, CT) is stabilizable.
(AT, C7T) is known as the dual system of (C, A).

« We can prove this by noticing the similarity between Q, and Q7'; if we take (AT, CT) and form its
controllability matrix, we get Qf, which has the same rank as Q,, so the system is observable if and

only if its dual system is controllable

PBH Test for Detectability: (C, A) is detectable if and only if for all eigenvalues A of A,

Re(d) > 0 —> rank<[”5AD —

o This is analogous to applying the PBH test for stabilizability to the dual system
e Proof:
— (C, A) is detectable if and only if (AT, CT) is stabilizable, which is true if and only if for all
eigenvalues of AT, Re(\) >0 = rank( [\ — AT C"]) = n (PBH stabilizability test)

— Since transpose does not change rank or eigenvalues, this is the same as rank (PI C_ A}) =n
o Suppose (C,A) is not observable, then by applying the Kalman decomposition we get



z = An 412 z + §1 u and y = [O C’l}z + Du where (01,2122) is the observable
0 Ay B,

subsystem

= | Ly A FA A Ap - LGy
e Let L = |:t/2:| then A — LC = { 0 Ay £201:|
— This shows that we can affect the eigenvalues of the ;422 subsystem but not the All subsystem
— The eigenvalues of Ay, are the unobservable etgenvalues, and the eigenvalues of A,y are the
observable eigenvalues; together these make up all eigenvalues of A
— Just like the controllability case, by the PBH test, an eigenvalue is unobservable if and only if

rank <[)\I C_ A]) < n, and observable if and only if rank <[)\I C_ A}) =n

Output Feedback Stabilization

o Putting it all together, how do we stabilize a system if we only know the output y(¢) and input w(t)
but not the state?

« Given a stabilizable and detectable system, our goal is to design K and L such that the eigenvalues
of (A+ BK) and (A — LC) have real part less than zero, then we can implement the control law
uw = K& and observer = Az + Bu + L(y — 9)

y=Cx+ Du

o We will show that this indeed results in an asymptotically stable system

~Lete=xz—2
- &= Az + Bu
=Axz+ BKz+ BKx - BKx

=Ax+ BKz - BK(z — &)
=(A+ BK)x — BKe
— Also, € = (A — LC)e (shown previously)
¢] [A+BK -BK |[z] . .
— Therefore ol = [ 0 A LC] [e]’ so if we have the eigenvalues of (A + BK) and
(A — LC) both negative, then the overall system is stable

Separation Principle: To stabilize a system (A, B,C, D) through output feedback, we can design
separately an asymptotically stable state feedback controller to place the eigenvalues of A + BK, and
an asymptotically stable observer to place the eigenvalues of A — LC, then using the observer estimate
for state feedback. The resulting control law v = K& makes the system asymptotically stable.
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