

Lecture 17, Nov 7, 2025

Stabilizability

- Last lecture we showed that we can place the poles of a closed-loop system arbitrarily if it is controllable; what if the system is not controllable? Can we make it stable?

Definition

(\mathbf{A}, \mathbf{B}) is *stabilizable* if there exists some \mathbf{K} such that all the eigenvalues of $(\mathbf{A} + \mathbf{B}\mathbf{K})$ have negative real part, i.e. with control law $\mathbf{u} = \mathbf{K}\mathbf{x}$, the resulting system is asymptotically stable.

- Stabilizability is a weaker condition than controllability, i.e. controllability implies stabilizability, but not the other way around
- Example: $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - Notice this is already in the Kalman decomposition form, so we can tell that the system is not controllable
 - This has eigenvalues $\{1, -1\}$, where we cannot affect the -1 since it is in $\hat{\mathbf{A}}_{22}$; however we can affect the other eigenvalue of 1 to bring it into the open left half plane
 - Consider $\mathbf{u} = [k_1 \ k_2] \mathbf{x}$, so the closed-loop system is $\mathbf{A} + \mathbf{B}\mathbf{K} = \begin{bmatrix} 1 + k_1 & 1 + k_2 \\ 0 & -1 \end{bmatrix}$
 - Therefore we can choose any k_2 , and choose a k_1 such that $k_1 < -1$, so that $1 + k_1$ (the first eigenvalue) has negative real part
 - The speed of convergence is capped by the uncontrollable eigenvalue of -1 , so regardless of our choice of k_1 , the system cannot possibly converge faster than e^{-t}

Definition

For a system (\mathbf{A}, \mathbf{B}) , in its Kalman decomposition, the eigenvalues of $\hat{\mathbf{A}}_{22}$ are the *uncontrollable eigenvalues*; the other eigenvalues, i.e. the eigenvalues of $\hat{\mathbf{A}}_{11}$, are the *controllable eigenvalues*. Note the eigenvalues of \mathbf{A} (equivalently the eigenvalues of $\hat{\mathbf{A}}$) is the union of the eigenvalues of $\hat{\mathbf{A}}_{11}, \hat{\mathbf{A}}_{22}$.

- An equivalent definition for stabilizability is to have all the uncontrollable eigenvalues have negative real part, or equivalently all the nonnegative eigenvalues are controllable

Theorem

PBH Test for Stabilizability: λ is a controllable eigenvalue of (\mathbf{A}, \mathbf{B}) (equivalently, λ is not an eigenvalue of $\hat{\mathbf{A}}_{22}$) if and only if

$$\text{rank}([\lambda\mathbf{I} - \mathbf{A} \ \mathbf{B}]) = n$$

Equivalently, λ is an uncontrollable eigenvalue if and only if $\text{rank}([\lambda\mathbf{I} - \mathbf{A} \ \mathbf{B}]) < n$. Therefore a system is stabilizable if and only if this matrix has rank n for all non-negative eigenvalues of \mathbf{A} .

- Proof of forward direction (λ not an eigenvalue of $\hat{\mathbf{A}}_{22} \implies \text{rank}([\lambda\mathbf{I} - \mathbf{A} \ \mathbf{B}]) = n$):
 - $\text{rank}([\mathbf{s}\mathbf{I} - \hat{\mathbf{A}} \ \hat{\mathbf{B}}]) = \text{rank}([\mathbf{s}\mathbf{I} - \mathbf{A} \ \mathbf{B}])$ because the two matrices are related through a matrix multiplication by a non-singular matrix
 - $[\lambda\mathbf{I} - \hat{\mathbf{A}} \ \hat{\mathbf{B}}] = \begin{bmatrix} \lambda\mathbf{I} - \hat{\mathbf{A}}_{11} & -\hat{\mathbf{A}}_{12} & \hat{\mathbf{B}}_1 \\ 0 & \lambda\mathbf{I} - \hat{\mathbf{A}}_{22} & 0 \end{bmatrix}$
 - If λ is not an eigenvalue of $\hat{\mathbf{A}}_{22}$, then $\lambda\mathbf{I} - \hat{\mathbf{A}}_{22}$ is full-rank and therefore the bottom $n - k$ rows are linearly independent, so we only need to look at the top k rows (where $k = \text{rank}(\mathbf{Q}_c)$)
 - We showed in lecture that the subsystem $(\hat{\mathbf{A}}_{11}, \hat{\mathbf{B}}_1)$ is completely controllable, and therefore $\text{rank}([\lambda\mathbf{I} - \hat{\mathbf{A}}_{11} \ \hat{\mathbf{B}}_1]) = k$ by the PBH controllability test

- Since adding the extra columns in $-\hat{\mathbf{A}}_{12}$ cannot possibly make the first k rows dependent, we conclude that the first k rows are linearly independent, so the overall matrix has rank n
- In general, if we have a system that is stabilizable but not controllable, we can find its Kalman decomposition, and design a controller to stabilize the controllable subsystem only, and then transform back
 - For the uncontrollable subsystem the gain would be arbitrary, so we usually just append zeros