

Lecture 16, Nov 7, 2025

Pole Assignment for Multi-Input Systems

- Proof of Wonham's pole assignment theorem:
 - Assume (A, B) controllable, show that we can assign the poles to $\Lambda = \{\lambda_1, \dots, \lambda_n\}$
 - * Let some nonzero $b = Bg$, then by the helper lemma from the previous lecture, there exists an F such that $(A + BF, b)$ is controllable
 - * Since this is a single-input system and controllable, we know pole assignment is solvable, i.e. $\exists H \in \mathbb{R}^{1 \times n}$ such that $(A + BF + bH)$ has eigenvalues Λ
 - *
$$\begin{aligned} A + BF + bH &= A + BF + BgH \\ &= A + B(F + gH) \\ &= A + BK \end{aligned}$$
 - * Therefore if we choose $K = F + gH$, then the closed-loop system will have eigenvalues Λ
 - To show the reverse direction, take the contrapositive, i.e. assume that (A, B) is not controllable, show that the pole assignment problem is not solvable
 - * Use the Kalman decomposition $\begin{bmatrix} \dot{z}^1 \\ \dot{z}^2 \end{bmatrix} = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{22} \end{bmatrix} \begin{bmatrix} z^1 \\ z^2 \end{bmatrix} + \begin{bmatrix} \hat{B}_1 \\ 0 \end{bmatrix} u$
 - * Let $\hat{K} = [\hat{K}_1 \quad \hat{K}_2]$ so that $u = \hat{K} \begin{bmatrix} z^1 \\ z^2 \end{bmatrix} = \hat{K}_1 z^1 + \hat{K}_2 z^2$
 - * The closed-loop system is $\begin{bmatrix} \dot{z}^1 \\ \dot{z}^2 \end{bmatrix} = \begin{bmatrix} \hat{A}_{11} + \hat{B}_1 \hat{K}_1 & \hat{A}_{12} + \hat{B}_1 \hat{K}_2 \\ 0 & \hat{A}_{22} \end{bmatrix} \begin{bmatrix} z^1 \\ z^2 \end{bmatrix} = \hat{M}z$
 - * Since \hat{M} is block-upper-triangular, its eigenvalues are the union of the eigenvalues of $\hat{A}_{11} + \hat{B}_1 \hat{K}_1$ and those of \hat{A}_{22}
 - * However, we cannot affect the eigenvalues of \hat{A}_{22} through \hat{K} at all, so in general pole assignment is not solvable
- Wonham's pole assignment theorem also leads to an eigenvalue assignment algorithm for multi-input systems, by converting it into a single-input system
 - Like in the proof, we convert the system to a single-input one, $(A + BF, b)$, then use the single-input pole assignment algorithm to find H , and finally take $K = F + gH$