

Lecture 15, Nov 7, 2025

Stabilization and Pole Assignment

- The *stabilization problem* is to design a controller $\mathbf{u} = \mathbf{K}\mathbf{x}$ so that the resulting system $\dot{\mathbf{x}} = \mathbf{Ax} + \mathbf{Bu} = (\mathbf{A} + \mathbf{BK})\mathbf{x}$ is asymptotically stable
 - For a nonlinear system, we want $\mathbf{x}(t) \rightarrow \mathbf{x}^*(t)$ where $\mathbf{x}^*(t)$ is an equilibrium condition, in which case $\tilde{\mathbf{u}} = \mathbf{u} - \mathbf{u}^* = \mathbf{K}(\mathbf{x} - \mathbf{x}^*)$ and the system is $\dot{\tilde{\mathbf{x}}} = (\mathbf{A} + \mathbf{BK})\tilde{\mathbf{x}}$
- The *pole assignment problem* is to find \mathbf{K} such that the eigenvalues of $\mathbf{A} + \mathbf{BK}$ are in designed locations of \mathbb{C}

Theorem

If the single-input system (\mathbf{A}, \mathbf{b}) is controllable, then the pole assignment problem is solvable, i.e. the eigenvalues of $(\mathbf{A} + \mathbf{BK})$ can be placed arbitrarily, as long as they are in conjugate pairs.

- Proof: We can put (\mathbf{A}, \mathbf{b}) in controllable canonical form, $\dot{\mathbf{z}} = \hat{\mathbf{A}}\mathbf{z} + \hat{\mathbf{b}}\mathbf{u}$
 - Let $\hat{\mathbf{k}} = [\hat{k}_1 \ \dots \ \hat{k}_n]$
 - The closed-loop system looks like $\mathbf{A} + \hat{\mathbf{b}}\hat{\mathbf{k}} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \hat{k}_1 - a_0 & \hat{k}_2 - a_1 & \hat{k}_3 - a_2 & \dots & \hat{k}_n - a_{n-1} \end{bmatrix}$
 - We can show $\det(s\mathbf{I} - (\mathbf{A} + \hat{\mathbf{b}}\hat{\mathbf{k}})) = s^n + (a_{n-1} - \hat{k}_n)s^{n-1} + \dots + (a_1 - \hat{k}_2)s + (a_0 - \hat{k}_1)$
 - Therefore if we want some set of poles $\lambda_1, \dots, \lambda_n$, we can expand $(s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_n) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0$, then take $\hat{k}_i = a_{i-1} - \alpha_{i-1}$
 - To get \mathbf{k} for the original system (if it was not originally in controllable canonical form), note $\mathbf{k}\mathbf{x} = \mathbf{u} = \hat{\mathbf{k}}\mathbf{z} = \hat{\mathbf{k}}\mathbf{P}^{-1}\mathbf{x}$, so $\mathbf{k} = \hat{\mathbf{k}}\mathbf{P}^{-1}$

Theorem

Wonham's Pole Assignment Theorem: Any system (\mathbf{A}, \mathbf{B}) is completely controllable if and only if the poles of $\mathbf{A} + \mathbf{BK}$ can be freely assigned, i.e. the pole assignment problem is solvable.

- Lemma: If (\mathbf{A}, \mathbf{B}) is completely controllable, then $\forall \mathbf{b} \in \mathcal{R}(\mathbf{B}), \exists \mathbf{F} \in \mathbb{R}^{m \times n}$ such that $(\mathbf{A} + \mathbf{BF}, \mathbf{b})$ is controllable
 - This essentially transforms the multi-input case into the single-input case
 - We will not prove this in lecture, but we'll use this for the proof of Wonham's pole assignment theorem

Summary

To place the closed-loop poles of (\mathbf{A}, \mathbf{b}) , i.e. set the eigenvalues of $\mathbf{A} + \mathbf{k}\mathbf{b}$ to $\{\lambda_1, \dots, \lambda_n\}$:

1. Expand the desired characteristic polynomial:

$$p_{des}(s) = (s - \lambda_1) \cdots (s - \lambda_n) = s^n + \alpha_{n-1}s^{n-1} + \cdots + \alpha_1s + \alpha_0$$

2. Expand the characteristic polynomial of \mathbf{A} :

$$p_A(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$$

3. Let $\hat{\mathbf{k}} = [a_0 - \alpha_0 \quad \cdots \quad a_{n-1} - \alpha_{n-1}]$

4. Determine \mathbf{P} required to put the system into controllable canonical form:

$$\mathbf{P} = \mathbf{Q}_c \mathbf{T} \quad \mathbf{T} = \begin{bmatrix} a_1 & a_2 & \cdots & a_{n-1} & 1 \\ a_2 & a_3 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

5. Let $\mathbf{k} = \hat{\mathbf{k}}\mathbf{P}^{-1}$ and $\mathbf{u} = \mathbf{k}\mathbf{x}$ solves the pole assignment problem.