
Lecture 14, Oct 17, 2025
Kalman Decomposition and Controllable Canonical Form

Theorem

PBH Controllability Test: The system (A, B) is completely controllable if and only if

rank(
[
sI − A B

]
) = n, ∀s ∈ C

Note if s is not an eigenvalue of A, this matrix always has rank n, so the condition only needs to be
tested for eigenvalues of A.

• Proof:
– Forward direction: rank(Qc) = n =⇒ rank(

[
sI − A B

]
) = n, ∀s ∈ C

* Take the contrapositive, ∃s ∈ C s.t. rank(
[
sI − A B

]
) < n =⇒ rank(Qc) < n

* Since the matrix is not full rank, there exists v such that vT
[
sI − A B

]
= 0

* Therefore svT = vT A and vT B = 0 ∈ R1×m

* Multiply by B, svT B = vT AB, but vT B = 0 so vT AB = 0
• We can repeat this for all powers of A, e.g. svT AB = vT A2B = 0

* Therefore vT
[
B AB · · · An−1B

]
= vT Qc = 0, and so Qc is not full rank

• Note that since multiplying by a non-singular matrix does not change rank, we can show that the PBH
test is coordinate invariant

• Suppose rank(Qc) < n, i.e. R(Qc) ⊊ Rn; R(Qc) has the following properties:
– R(Qc) is A-invariant
– R(B) ⊆ R(Qc)

• As a consequence of the above and the representation theorem, there exists a nonsingular matrix P

such that
[
Â11 Â12

0 Â12

]
= P −1AP and

[
B̂1
0

]
= P −1B, where Â11, B̂1 have dimension dim(R(Qc))

• Let z = P −1x =
[
z1

z2

]
where z1 ∈ Rdim(R(Qc)) and z2 has the dimensions of its independent complement

– ż1 = Â11z1 + Â12z2 + B̂1u
– ż2 = Â22z2

– This is the Kalman decomposition for controllability
• The Kalman decomposition separates the system into a part that we can control and a part we cannot,

so if the eigenvalues of Â22 don’t have negative real parts, our system cannot be controlled

Definition

For a system (A, b) where rank(Qc) = k < n, let[
Â11 Â12

0 Â12

]
= P −1AP ,

[
B̂1
0

]
= P −1B

for some nonsingular P , where Â11, B̂1 ∈ Rk×k, Â12 ∈ Rk×(n−k), Â22 ∈ R(n−k)×(n−k).

The Kalman decomposition defines z = P −1x =
[
z1

z2

]T

where z1 ∈ Rk, z2 ∈ Rn−k, so the system is
decomposed as

ż1 = Â11z1 + Â12z2 + B̂1u

ż2 = Â22z2

• We can show that (Â11, B̂1) is completely controllable
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– P −1Qc =
[

P −1B · · ·
P −1An−1B =

] [
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
0 0 · · · 0

]
– Note k = rank(Qc), and since P is invertible, rank(P −1Qc) = k
– Since the zeros at the bottom don’t affect rank, rank(

[
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
]
) = k

* We’re not done yet because we want the last power of Â11 to be k − 1
– By Cayley-Hamilton, we know Âk

11, Âk+1
11 , . . . , Ân−1

11 can all be written as a linear combination of
Â11, . . . , Âk−1

11 , because Â11 ∈ Rk×k

– This means rank(
[
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
]
) = rank(

[
B̂1 Â11B̂1 · · · Âk−1

11 B̂1
]
) = k

* This is a simple extension of what we proved in Assignment 3
• Because Â is a block-upper-triangular matrix, its eigenvalues are the union of eigenvalues of Â11, Â22;

furthermore, the similarity transform by P does not affect eigenvalues, so the eigenvalues of A are also
this same set

– We can control the eigenvalues of the Â11 subsystem; these are known as the controllable
modes/eigenvalues

– However we can’t control the eigenvalues of Â22, so these are the uncontrollable modes/eigenvalues
– Intuitively we can see this because the control u applies to Â11 but not Â22

• Intuition: The rank of the controllability matrix is the number of states that are controllable; therefore
if the rank is n, then all states are controllable, but if the rank is less than n, some states will not be
controllable and so it might not be possible to stabilize the system

• Practically, to compute the Kalman decomposition, we need to select a basis for R(Qc) (e.g. by picking
independent columns), and then select n − k other linearly independent vectors that together form a
basis for Rn; then we can form P and compute Â, B̂

– The choice of basis does affect the form of Â11 and Â22, however it does not change the controllable
and uncontrollable eigenvalues

Controllable Canonical Form

• Consider a single input system ẋ = Ax + bu where (A, b) is completely controllable; by choosing a
special basis, we can write this in a standard form known as the controllable canonical form

• Let XA(s) = det(sI − A) = sn + an−1sn−1 + · · · + a1s + a0, the characteristic polynomial of A
• Define our series of basis vectors:

– vn = b
– vn−1 = Avn + an−1vn = Ab + an−1b
– vn−2 = Avn−1 + an−2vn = A2b + an−1Ab + an−2b
– · · ·
– v1 = Av2 + a1vn = An−1b + an−1An−2b + · · · + a1b

• Note that Avi = vi−1 − ai−1vn and Av1 + a0vn = 0
– By Cayley-Hamilton, A(An−1 + an−1An−2 + · · · + a1I) + a0I = 0

=⇒ A(An−1 + an−1An−2 + · · · + a1I)b + a0b = 0
– Notice that Av1 + a0vn = A(An−1b + an−1An−2b + · · · + a1b) + a0b

= A(An−1 + an−1An−2 + · · · + a1I)b + a0b

= 0
• To show that { v1, . . . , vn } is linearly independent:

–
[
v1 · · · vn

]
=

[
b Ab · · · An−1b

]


a1 a2 a3 · · · an−1 1
a2 a3 · · · an−1 1 0

a3
... . . .

... an−1
an−1 1

1 0


= QcT

– Due to this structure, det(T ) = (−1)n−1; since the system is controllable, we know Qc is invertible,
and therefore

[
v1 · · · vn

]
is also invertible
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• Let P =
[
v1 · · · vn

]
and z = P −1x =⇒ ż = P −1AP z + P −1bu = Ãz + b̃u

– b̃ = P −1b =⇒ P b̃ = b = vn, so b̃ =


0
...
0
1


– Ã = P −1AP =⇒ AP = P Ã
– AP =

[
Av1 Av2 · · · Avn

]
=

[
−a0vn v1 − a1vn v2 − a2vn · · · vn−1 − an−1vn

]

=
[
v1 · · · vn

]


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


= P Ã

• We have just proven that a completely controllable system can be written in controllable canonical
form; it turns out that the reverse is also true, i.e. if a system can be written in controllable canonical
form, it is always controllable

Theorem

A single-input system (A, b) is completely controllable if and only if there exists a nonsingular matrix
P , such that

ż = P −1AP z + P −1bu = Ãz + b̃u

where

Ã =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 b̃ =


0
...
0
1


This is known as the controllable canonical form.
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