Lecture 14, Oct 17, 2025

Kalman Decomposition and Controllable Canonical Form

PBH Controllability Test: The system (A, B) is completely controllable if and only if

Note if s is not an eigenvalue of A, this matrix always has rank n, so the condition only needs to be
tested for eigenvalues of A.

e Proof:

— Forward direction: rank(Q.) =n = rank([sI — A B])=n,VseC

* Take the contrapositive, 3s € C s.t. rank([s] — A B]) <n = rank(Q.) <n
Since the matrix is not full rank, there exists v such that v* [sI — A B] =0
Therefore svT = vT A and vT B =0 € R*™
Multiply by B, sv’ B = vT AB, but v/ B =0s0o v/ AB =0
o We can repeat this for all powers of A, e.g. svl AB =vTA’B =0
Therefore v” [B AB --- A"_lB] =v7Q, =0, and so Q. is not full rank
e Note that since multiplying by a non-singular matrix does not change rank, we can show that the PBH
test is coordinate invariant

o Suppose rank(Q.) < n, i.e. R(Q:) S R™; R(Q.) has the following properties:

- R(Q.) is A-invariant
e As a consequence of the above and the representation theorem, there exists a nonsingular matrix P

such that {All {112] =P 'AP and [Bl} = P7!'B, where Ay, By have dimension dim(R(Q.))
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e Letz=P = [zz] where z' € RI™R(Qe)) and 22 has the dimensions of its independent complement

- 21 = Allzl —+ A12Z2 + Blu
— iZ = AQQZZ
— This is the Kalman decomposition for controllability
e The Kalman decomposition separates the system into a part that we can control and a part we cannot,
so if the eigenvalues of A, don’t have negative real parts, our system cannot be controlled

For a system (A, b) where rank(Q.) = k < n, let
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for some nonsingular P, where A1, By e RF*F A, e RF*X(=0) 4., ¢ ROPF)x(n=k)
11T
The Kalman decomposition defines z = P~z = EQ} where z' € R, 22 € R" %, so the system is

decomposed as
21 = Allzl + A12Z2 + Blu

22 = A22 Z2

o We can show that (AH, Bl) is completely controllable



_pig, - p'B ... [B, AuB, --- AY'B;
¢ |P'A"'B 0 0o - 0
— Note k = rank(Q..), and since P is invertible, rank(P~'Q.) = k

— Since the zeros at the bottom don’t affect rank, rank([Bl AuB, - A?lel}) =k
* We’re not done yet because we want the last power of A tobek—1
— By Cayley-Hamilton, we know A’fl, A’ffl, ey A?fl can all be written as a linear combination of
AH, .. .,A’fl_l, because Ap; € RF**
— This means rank([Bl AnB, - A’flel}) = rank([Bl AnB;, - Alfflﬁ’l]) =k

* This is a simple extension of what we proved in Assignment 3
« Because A is a block-upper-triangular matrix, its eigenvalues are the union of eigenvalues of Au, Aoy
furthermore, the similarity transform by P does not affect eigenvalues, so the eigenvalues of A are also
this same set
— We can control the eigenvalues of the Ay subsystem; these are known as the controllable
modes/eigenvalues
— However we can’t control the eigenvalues of Ass, so these are the uncontrollable modes/eigenvalues
— Intuitively we can see this because the control w applies to Au but not Agg
e Intuition: The rank of the controllability matrix is the number of states that are controllable; therefore
if the rank is n, then all states are controllable, but if the rank is less than n, some states will not be
controllable and so it might not be possible to stabilize the system
o Practically, to compute the Kalman decomposition, we need to select a basis for R(Q..) (e.g. by picking
independent columns), and then select n — k other linearly independent vectors that together form a
basis for R™; then we can form P and compute A, B
— The choice of basis does affect the form of An and AQZ, however it does not change the controllable
and uncontrollable eigenvalues

Controllable Canonical Form

o Consider a single input system & = Ax + bu where (A, b) is completely controllable; by choosing a
special basis, we can write this in a standard form known as the controllable canonical form

o Let X4(s) =det(s] — A) =s" +a,_15""' + -+ ais + ag, the characteristic polynomial of A
e Define our series of basis vectors:

-v"=b

— "= Av" 4+ a,,_1v" = Ab+ a,_1b

— "2 = Ap"! + Apy_ov" = A%b +a,—1Ab+ a,_ob
~ v =Av +av" =A""b+a,_1 A" b+ -+ ard
o Note that Av' = v~ ! — q;_10" and Av' + qpv™ =0

— By Cayley-Hamilton, A(A"_1 +a, A" 2 4.4 arI)+agl =0

— A(Anfl + an—lAniz + -+ alI)b + aOb =0
— Notice that Av' + agv" = A(A" b+ an 1 A" b+ -+ a1b) + agb
=AA" ' +a, A" 2+ +a I)b+apb

=0
« To show that {v',... v™} is linearly independent:
[ ay ag as e ap—1 1_
a9 as et Qp—1 1 0
~ [t - "] =[b Ab ... A | ®® ' ' =Q.T
: Gp—1

QAp—1 1

L 1 0 -
— Due to this structure, det(T') = (—1)""!; since the system is controllable, we know Q.. is invertible,

and therefore [v! .-+ v"] is also invertible



e Let P = [vl v”] and z=P 'z = 3=P 'APz+ P 'bu= Az + bu

0
~b=P'b = Pb=b=v",s0b= 0
1
- A=P 'AP — AP=PA
- AP =[Av' Av® ... Av"]
= [—aov” v —ao” v:—axv” - "l an_lv”]
0 1 0 0
0 0 1 0
=o' 0] :
0 0 0 1
—Gp —ar —az - —Ap-1
= PA

e We have just proven that a completely controllable system can be written in controllable canonical

form; it turns out that the reverse is also true, i.e. if a system can be written in controllable canonical
form, it is always controllable

A single-input system (A, b) is completely controllable if and only if there exists a nonsingular matrix
P, such that

3 =P 'APz+ P 'bu = Az + bu

where
0 1 0 0 0
0 0 1 0
A= : b=
0 0 0 1 ?
—Gp —ai —a2 —Qp—1

This is known as the controllable canonical form.
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