

Lecture 13, Oct 15, 2025

Controllability

Definition

An LTI system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ is *completely controllable* (or just controllable) if, for some positive time T , for all possible initial and final states $\mathbf{x}_0, \mathbf{x}_f \in \mathbb{R}^n$, there exists some piecewise continuous input $\mathbf{u}(t), t \in [0, T]$ that brings the system from the initial state to the final state, i.e.

$$\mathbf{x}_f = \mathbf{x}(T) = e^{\mathbf{A}T} \mathbf{x}_0 + \int_0^T e^{\mathbf{A}(T-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau = e^{\mathbf{A}T} + L_c(\mathbf{u}(\cdot))$$

- $L_c(\mathbf{u}(\cdot))$ is a map from real piecewise continuous functions to \mathbb{R}^n , the impact of the input on the final state (compared to just an autonomous system)
- Let $\bar{\mathcal{R}}_T(\mathbf{x}_0) = \{ \mathbf{x}_f \in \mathbb{R}^n \mid \exists \mathbf{u} : [0, T] \mapsto \mathbb{R}^m, \mathbf{x}_f = e^{\mathbf{A}T} \mathbf{x}_0 + L_c(\mathbf{u}(\cdot)) \}$
 - This denotes the set of all possible final states \mathbf{x}_f that we can reach from an initial state \mathbf{x}_0 with piecewise continuous inputs \mathbf{u}
- Lemma: The LTI system (\mathbf{A}, \mathbf{B}) is completely controllable if and only if $\bar{\mathcal{R}}_T(0) = \mathbb{R}^n$, or equivalently $\mathcal{R}(L_c) = \mathbb{R}^n$
 - Assume (\mathbf{A}, \mathbf{B}) is completely controllable, then we can let $\mathbf{x}_0 = 0$, and there exists $\mathbf{u}(t)$ such that we can reach any $\mathbf{x}_f \in \mathbb{R}^n$; therefore by definition, $\bar{\mathcal{R}}_T(0) = \mathbb{R}^n$

Coordinate and Feedback Transformations

- Consider the coordinate transformation $\mathbf{z} = \mathbf{P}^{-1}\mathbf{x} \implies \dot{\mathbf{z}} = \mathbf{P}^{-1}\dot{\mathbf{x}}$

$$\begin{aligned} &= \mathbf{P}^{-1}(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}) \\ &= \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{z} + \mathbf{P}^{-1}\mathbf{B}\mathbf{u} \end{aligned}$$
 - Therefore the coordinate transform does $(\mathbf{A}, \mathbf{B}) \rightarrow (\mathbf{P}^{-1}\mathbf{A}\mathbf{P}, \mathbf{P}^{-1}\mathbf{B})$
- A *feedback transformation* is $\mathbf{u} = \mathbf{K}\mathbf{x} + \mathbf{v}$ where \mathbf{v} is the new input, for some feedback matrix \mathbf{K} (now the system's input contains feedback based on its state)
 - $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{B}(\mathbf{K}\mathbf{x} + \mathbf{v}) = (\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}\mathbf{v}$
 - The feedback transform does $(\mathbf{A}, \mathbf{B}) \rightarrow (\mathbf{A} + \mathbf{B}\mathbf{K}, \mathbf{B})$
- We will see that coordinate and feedback transformations do not affect the controllability of a system
 - This is useful because we can see the system under a different transformation, which may lead to more insights, and obtain information applicable to the original system

Theorem

For any nonsingular \mathbf{P} , the system (\mathbf{A}, \mathbf{B}) is completely controllable if and only if $(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}, \mathbf{P}^{-1}\mathbf{B})$ is completely controllable.

For any \mathbf{K} , the system (\mathbf{A}, \mathbf{B}) is completely controllable if and only if $(\mathbf{A} + \mathbf{B}\mathbf{K}, \mathbf{B})$ is completely controllable.

In other words, controllability is invariant under coordinate and feedback transformations.

- Proof for coordinate transform invariance:
 - From the lemma, completely controllable (\mathbf{A}, \mathbf{B}) means $\mathcal{R}(L_c) = \mathbb{R}^n$
 - Consider the transformed $\tilde{L}_c(\mathbf{u}(\cdot)) = \int_0^T e^{\mathbf{P}^{-1}\mathbf{A}\mathbf{P}(T-\tau)} \mathbf{P}^{-1}\mathbf{B}\mathbf{u}(\tau) d\tau$ so $\mathcal{R}(\tilde{L}_c) = \mathbb{R}^n$ if and only if the transformed system is controllable
 - The idea is that L_c and \tilde{L}_c are related by a nonsingular matrix, so they should have the same range space (similar to how \mathbf{B} and $\mathbf{P}\mathbf{B}$ have the same range space for nonsingular \mathbf{P})

Controllability Matrix

Theorem

Cayley-Hamilton Theorem: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ have characteristic polynomial

$$\det(s\mathbf{I} - \mathbf{A}) = s^n + a_{n-1}s^{n-1} + \cdots + a_0$$

then \mathbf{A} satisfies

$$\mathbf{A}^n + a_{n-1}\mathbf{A}^{n-1} + \cdots + a_0\mathbf{I} = \mathbf{0}_{n \times n}$$

i.e. every square matrix satisfies its own characteristic equation. This allows us to express \mathbf{A}^n and any higher powers of \mathbf{A} as a linear combination of $\mathbf{I}, \mathbf{A}, \dots, \mathbf{A}^{n-1}$.

Definition

The *controllability matrix* for a system (\mathbf{A}, \mathbf{B}) is defined as

$$\mathbf{Q}_c = [\mathbf{B} \quad \mathbf{AB} \quad \cdots \quad \mathbf{A}^{n-1}\mathbf{B}] \in \mathbb{R}^{n \times nm}$$

The system (\mathbf{A}, \mathbf{B}) is completely controllable if and only if $\mathcal{R}(\mathbf{Q}_c) = \mathbb{R}^n$, or $\text{rank}(\mathbf{Q}_c) = n$.

- Proof ($\text{rank}(\mathbf{Q}_c) = n \implies (\mathbf{A}, \mathbf{B})$ is controllable):
 - Proof by contradiction: first assume the negation of the statement, i.e. let $\text{rank}(\mathbf{Q}_c) = n$ but (\mathbf{A}, \mathbf{B}) not controllable; we will show that this shows $\text{rank}(\mathbf{Q}_c) \neq n$, leading to a contradiction
 - Let $\hat{\mathbf{L}}_c$ such that $L_c(\mathbf{u}(\cdot)) = \int_0^T e^{\mathbf{A}(T-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau = e^{\mathbf{AT}} \int_0^T e^{-\mathbf{A}\tau} \mathbf{B}\mathbf{u}(\tau) d\tau = e^{\mathbf{AT}} \hat{\mathbf{L}}_c(\mathbf{u}(\cdot))$
 - * (\mathbf{A}, \mathbf{B}) not controllable means $\dim(\mathcal{R}(L_c)) < n$
 - * Since $e^{\mathbf{AT}}$ is always invertible, $\text{rank}(L_c) = \text{rank}(\hat{\mathbf{L}}_c) \implies \dim(\mathcal{R}(\hat{\mathbf{L}}_c)) < n$
 - $\mathcal{R}(\hat{\mathbf{L}}_c)$ has an orthogonal component $\mathcal{R}(\hat{\mathbf{L}}_c)^\perp$ where $\mathcal{R}(\hat{\mathbf{L}}_c)^\perp \oplus \mathcal{R}(\hat{\mathbf{L}}_c) = \mathbb{R}^n$, and $\dim(\mathcal{R}(\hat{\mathbf{L}}_c)) < n$ means there exists a nonzero $\mathbf{v} \in \mathcal{R}(\hat{\mathbf{L}}_c)^\perp$ orthogonal to all elements in $\hat{\mathbf{L}}_c$
 - Then for any any piecewise continuous $\mathbf{u}(\cdot) : [0, T] \mapsto \mathbb{R}^m$, we have $\mathbf{v}^T \int_0^T e^{-\mathbf{A}\tau} \mathbf{B}\mathbf{u}(\tau) d\tau = 0$
 - * Consider the control input $\mathbf{u}^{i,s}(t) = \begin{cases} \mathbf{e}_i & t \in [0, s] \\ 0 & t \in (s, T] \end{cases}$ for $s \in [0, T]$ and $i = 1, \dots, m$
 - Note \mathbf{e}_i denotes a vector with a 1 in the i th element and all 0s everywhere else
 - This input picks out the i th column of \mathbf{B} for $t \in [0, s]$
 - * Therefore $0 = \mathbf{v}^T \int_0^T e^{-\mathbf{A}\tau} \mathbf{B}\mathbf{u}^{i,s}(\tau) d\tau = \mathbf{v}^T \int_0^s e^{-\mathbf{A}\tau} \mathbf{b}_i d\tau$ holds $\forall s \in [0, T]$
 - $\frac{d}{ds} \left(\mathbf{v}^T \int_0^s e^{-\mathbf{A}\tau} \mathbf{b}_i d\tau \right) = \mathbf{v}^T e^{-\mathbf{As}} \mathbf{b}_i = 0$, evaluate at $s = 0$ gives us $\mathbf{v}^T \mathbf{b}_i = 0$
 - $\frac{d^2}{ds^2} \left(\mathbf{v}^T \int_0^s e^{-\mathbf{A}\tau} \mathbf{b}_i d\tau \right) = -\mathbf{v}^T \mathbf{A} e^{-\mathbf{As}} \mathbf{b}_i = 0$, again at $s = 0$ gives $\mathbf{v}^T \mathbf{Ab}_i = 0$
 - Do this for up to the n th derivative, then $\mathbf{v}^T \mathbf{A}^k \mathbf{b}_i = 0$ for all $k = 0, \dots, n-1$
 - * Altogether $\mathbf{v}^T [\mathbf{b}_i \quad \mathbf{Ab}_i \quad \cdots \quad \mathbf{A}^{n-1}\mathbf{b}_i] = \mathbf{0} \in \mathbb{R}^{1 \times n}$
 - * Repeat for all i , then $\mathbf{v}^T [\mathbf{B} \quad \mathbf{AB} \quad \cdots \quad \mathbf{A}^{n-1}\mathbf{B}] = \mathbf{0} \in \mathbb{R}^{1 \times nm}$
 - Therefore we've shown there exists a nonzero \mathbf{v} where $\mathbf{v}^T \mathbf{Q}_c = \mathbf{0}$, meaning the rows of \mathbf{Q}_c are linearly dependent; since row rank equals column rank, $\text{rank}(\mathbf{Q}_c) < n$
- Example: RLC circuit with $\mathbf{A} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$- \mathbf{Q}_c = [\mathbf{B} \quad \mathbf{AB}] = \begin{bmatrix} 0 & \frac{1}{LC} \\ 1 & \frac{L}{R} \\ \frac{1}{L} & -\frac{1}{L^2} \end{bmatrix}$$

- For all nonzero L, C this matrix has rank 2, therefore this system is always completely controllable