
Lecture 13, Oct 15, 2025
Controllability

Definition

An LTI system ẋ = Ax + Bu is completely controllable (or just controllable) if, for some positive
time T , for all possible initial and final states x0, xf ∈ Rn, there exists some piecewise continuous
input u(t), t ∈ [0, T ] that brings the system from the initial state to the final state, i.e.

xf = x(T ) = eAT x0 +
ˆ T

0
eA(T −τ)Bu(τ) dτ = eAT + Lc(u(·))

• Lc(u(·)) is a map from real piecewise continuous functions to Rn, the impact of the input on the final
state (compared to just an autonomous system)

• Let R̄T (x0) = { xf ∈ Rn | ∃u : [0, T ] 7→ Rm, xf = eAT x0 + Lc(u(·)) }
– This denotes the set of all possible final states xf that we can reach from an initial state x0 with

piecewise continuous inputs u
• Lemma: The LTI system (A, B) is completely controllable if and only if R̄T (0) = Rn, or equivalently

R(Lc) = Rn

– Assume (A, B) is completely controllable, then we can let x0 = 0, and there exists u(t) such that
we can reach any xf ∈ Rn; therefore by definition, R̄T (0) = Rn

Coordinate and Feedback Transformations

• Consider the coordinate transformation z = P −1x =⇒ ż = P −1ẋ

= P −1(Ax + Bu)
= P −1AP z + P −1Bu

– Therefore the coordinate transform does (A, B) → (P −1AP , P −1B)
• A feedback transformation is u = Kx + v where v is the new input, for some feedback matrix K (now

the system’s input contains feedback based on its state)
– ẋ = Ax + Bu = Ax + B(Kx + v) = (A + BK)x + Bv
– The feedback transform does (A, B) → (A + BK, B)

• We will see that coordinate and feedback transformations do not affect the controllability of a system
– This is useful because we can see the system under a different transformation, which may lead to

more insights, and obtain information applicable to the original system

Theorem

For any nonsingular P , the system (A, B) is completely controllable if and only if (P −1AP , P −1B)
is completely controllable.
For any K, the system (A, B) is completely controllable if and only if (A + BK, B) is completely
controllable.

In other words, controllability is invariant under coordinate and feedback transformations.

• Proof for coordinate transform invariance:
– From the lemma, completely controllable (A, B) means R(Lc) = Rn

– Consider the transformed L̃c(u(·)) =
ˆ T

0
eP −1AP (T −τ)P −1Bu(τ) dτ so R(L̃c) = Rn if and only

if the transformed system is controllable
– The idea is that Lc and L̃c are related by a nonsingular matrix, so they should have the same

range space (similar to how B and P B have the same range space for nonsingular P )
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Controllability Matrix

Theorem

Cayley-Hamilton Theorem: Let A ∈ Rn×n have characteristic polynomial

det(sI − A) = sn + an−1sn−1 + · · · + a0

then A satisfies
An + an−1An−1 + · · · + a0I = 0n×n

i.e. every square matrix satisfies its own characteristic equation. This allows us to express An and
any higher powers of A as a linear combination of I, A, . . . , An−1.

Definition

The controllability matrix for a system (A, B) is defined as

Qc =
[
B AB · · · An−1B

]
∈ Rn×nm

The system (A, B) is completely controllable if and only if R(Qc) = Rn, or rank(Qc) = n.

• Proof (rank(Qc) = n =⇒ (A, B) is controllable):
– Proof by contradiction: first assume the negation of the statement, i.e. let rank(Qc) = n but

(A, B) not controllable; we will show that this shows rank(Qc) ̸= n, leading to a contradiction

– Let L̂c such that Lc(u(·)) =
ˆ T

0
eA(T −τ)Bu(τ) dτ = eAT

ˆ T

0
e−Aτ Bu(τ) dτ = eAT L̂c(u(·))

* (A, B) not controllable means dim(R(Lc)) < n
* Since eAT is always invertible, rank(Lc) = rank(L̂c) =⇒ dim(R(L̂c)) < n

– R(L̂c) has an orthogonal component R(L̂c)⊥ where R(L̂c)⊥ ⊕ R(L̂c) = Rn, and dim(R(L̂c)) < n
means there exists a nonzero v ∈ R(L̂c)⊥ orthogonal to all elements in L̂c

– Then for any any piecewise continuous u(·) : [0, T ] 7→ Rm, we have vT

ˆ T

0
e−Aτ Bu(τ) dτ = 0

* Consider the control input ui,s(t) =
{

ei t ∈ [0, s]
0 t ∈ (s, T ])

for s ∈ [0, T ] and i = 1, . . . , m

• Note ei denotes a vector with a 1 in the ith element and all 0s everywhere else
• This input picks out the ith column of B for t ∈ [0, s]

* Therefore 0 = vT

ˆ T

0
e−Aτ Bui,s(τ) dτ = vT

ˆ s

0
e−Aτ bidτ holds ∀s ∈ [0, T ]

• d
ds

(
vT

ˆ s

0
e−Aτ bidτ

)
= vT e−Asbi = 0, evaluate at s = 0 gives us vT bi = 0

• d2

ds2

(
vT

ˆ s

0
e−Aτ bidτ

)
= −vT Ae−Asbi = 0, again at s = 0 gives vT Abi = 0

• Do this for up to the nth derivative, then vT Akbi = 0 for all k = 0, . . . , n − 1
* Altogether vT

[
bi Abi · · · An−1bi

]
= 0 ∈ R1×n

* Repeat for all i, then vT
[
B AB · · · An−1B

]
= 0 ∈ R1×nm

– Therefore we’ve shown there exists a nonzero v where vT Qc = 0, meaning the rows of Qc are
linearly dependent; since row rank equals column rank, rank(Qc) < n

• Example: RLC circuit with A =

 0 1
C

− 1
L

−R

L

 , B =
[ 0

1
L

]
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– Qc =
[
B AB

]
=

 0 1
LC1

L
− R

L2


– For all nonzero L, C this matrix has rank 2, therefore this system is always completely controllable
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