

Lecture 12, Oct 10, 2025

Invariant Subspaces and the Representation Theorem

Definition

A subspace $\mathcal{V} \in \mathbb{R}^n$ is \mathbf{A} -invariant for $\mathbf{A} \in \mathbb{R}^{n \times n}$ if and only if

$$\forall \mathbf{x} \in \mathcal{V}, \mathbf{A}\mathbf{x} \in \mathcal{V}$$

i.e. any vector in the subspace stays within the subspace under a linear transformation \mathbf{A} . We denote this by $\mathbf{A}\mathcal{V} \subseteq \mathcal{V}$.

- Note this is equivalent to $\forall \mathbf{x}_0 \in \mathcal{V}, e^{\mathbf{A}t}\mathbf{x}_0 \in \mathcal{V}$
- Some examples:
 - $\mathcal{N}(\mathbf{A}), \mathcal{R}(\mathbf{A})$ are both \mathbf{A} -invariant
 - If $\mathbf{w}_1, \dots, \mathbf{w}_n \in \mathbb{R}^n$ are eigenvectors of \mathbf{A} , then $\text{span}(\mathbf{w}_1, \dots, \mathbf{w}_n)$ is \mathbf{A} -invariant

Theorem

Representation theorem: Let \mathcal{X} be a finite dimensional vector space over \mathbb{F} ($\dim(\mathcal{X}) = n$) and let $L : \mathcal{X} \mapsto \mathcal{X}$ be a linear map, and let \mathcal{V} be an L -invariant subspace of \mathcal{X} ($\dim(\mathcal{V}) = k$). Then there exists a basis $\{ \mathbf{x}^1, \dots, \mathbf{x}^n \}$ for \mathcal{X} such that the matrix representation of L in this basis has the form

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0}_{(n-k) \times k} & \mathbf{A}_{22} \end{bmatrix} \quad \mathbf{A}_{11} \in \mathbb{F}^{k \times k}, \mathbf{A}_{12} \in \mathbb{F}^{k \times (n-k)}, \mathbf{A}_{22} \in \mathbb{F}^{(n-k) \times (n-k)}$$

- Note that if L has a matrix representation \mathbf{B} in the standard basis, then $\mathbf{A} = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$, where $\mathbf{P} = [\mathbf{x}^1, \dots, \mathbf{x}^n]$
- Proof:
 - \mathcal{V} is a subspace so it has an independent complement \mathcal{W}
 - Let $\{ \mathbf{v}^1, \dots, \mathbf{v}^k \}$ be a basis for \mathcal{V} and $\{ \mathbf{v}^{k+1}, \dots, \mathbf{v}^n \}$ be a basis for \mathcal{W} , then $\{ \mathbf{v}^1, \dots, \mathbf{v}^n \}$ is a basis for \mathcal{X}
 - \mathcal{V} is L -invariant, so $L(\mathbf{v}^i) \in \mathcal{V}$ for $i = 1, \dots, k$ so we can express each $L(\mathbf{v}^i) = \sum_{j=1}^k a_{ji} \mathbf{v}^j + \sum_{l=k+1}^n 0 \mathbf{v}^l$
 - * For $i = k+1, \dots, n$ we no longer have $L(\mathbf{v}^i)$ since \mathcal{W} is not L -invariant, so for these terms the second sum does not have all zeros
 - Recall column i of the matrix representation of L in this basis are the coordinates of $L(\mathbf{v}^i)$, so

columns $i = 1, \dots, k$ have the form $\begin{bmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, and the rest of the columns are nonzero in general

- Putting it all together, we get the form of \mathbf{A} stated in the theorem
- The representation theorem allows us to split up a linear map into parts that are invariant and parts that are not
- Consider $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ and \mathcal{V} as an \mathbf{A} -invariant subspace of \mathbb{R}^n , then the representation theorem tells us that there exists a basis $\{ \mathbf{v}^1, \dots, \mathbf{v}^n \}$ of \mathbb{R}^n such that the matrix representation of \mathbf{A} has the form

$$\hat{\mathbf{A}} = \begin{bmatrix} \hat{\mathbf{A}}_{11} & \hat{\mathbf{A}}_{12} \\ \mathbf{0} & \hat{\mathbf{A}}_{22} \end{bmatrix}$$

- Now let $\mathbf{P} = [\mathbf{v}^1 \ \dots \ \mathbf{v}^n]$, then $\mathbf{A}\mathbf{P} = \mathbf{P}\hat{\mathbf{A}}$, i.e. $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \hat{\mathbf{A}}$

$$* \quad \mathbf{A}\mathbf{v}^j = \sum_{i=1}^n \hat{a}_{ij} \mathbf{v}^i = [\mathbf{v}^1 \quad \dots \quad \mathbf{v}^n] \begin{bmatrix} \hat{a}_{1j} \\ \vdots \\ \hat{a}_{nj} \end{bmatrix} = \mathbf{P} \begin{bmatrix} \hat{a}_{1j} \\ \vdots \\ \hat{a}_{nj} \end{bmatrix}$$

- * Recall that for a matrix representation of a linear map, column i contains the coordinates of the i -th basis vector after transformation by the linear map
 - This means \hat{a}_{ij} are the coordinates of $\mathbf{A}\mathbf{v}^j$ with respect to our basis
 - The last column vector here is the j th column of $\hat{\mathbf{A}}$
- * Repeat this for every column
- Let $\mathbf{z} = \mathbf{P}^{-1}\mathbf{x}$ so $\dot{\mathbf{z}} = \mathbf{P}^{-1}\dot{\mathbf{x}} = \mathbf{P}^{-1}\mathbf{A}\mathbf{x} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{z} = \hat{\mathbf{A}}\mathbf{z}$
- Then $\begin{bmatrix} \dot{\mathbf{z}}^1 \\ \dot{\mathbf{z}}^2 \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{A}}_{11} & \hat{\mathbf{A}}_{12} \\ \mathbf{0} & \hat{\mathbf{A}}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{z}^1 \\ \mathbf{z}^2 \end{bmatrix}$
- Now $\dot{\mathbf{z}}^1 = \hat{\mathbf{A}}_{11}\mathbf{z}^1 + \hat{\mathbf{A}}_{12}\mathbf{z}^2$ and $\dot{\mathbf{z}}^2 = \hat{\mathbf{A}}_{22}\mathbf{z}^2$
- Notice now that the \mathbf{z}^2 subsystem is decoupled
- We will later make use of this to define the Kalman decomposition and the notion of stabilizability