
Lecture 12, Oct 10, 2025
Invariant Subspaces and the Representation Theorem

Definition

A subspace V ∈ Rn is A-invariant for A ∈ Rn×n if and only if

∀x ∈ V, Ax ∈ V

i.e. any vector in the subspace stays within the subspace under a linear transformation A. We denote
this by AV ⊆ V.

• Note this is equivalent to ∀x0 ∈ V, eAtx0 ∈ V
• Some examples:

– N (A), R(A) are both A-invariant
– If w1, . . . , wn ∈ Rn are eigenvectors of N , then span w1, . . . , wn is A-invariant

Theorem

Representation theorem: Let X be a finite dimensional vector space over F (dim(X ) = n) and let
L : X 7→ X be a linear map, and let V be an L-invariant subspace of X (dim(V) = k). Then there
exists a basis { x1, . . . , xn } for X such that the matrix representation of L in this basis has the form

A =
[

A11 A12
0(n−k)×k A22

]
A11 ∈ Fk×k, A12 ∈ Fk×(n−k), A22 ∈ F(n−k)×(n−k)

• Note that if L has a matrix representation B in the standard basis, then A = P −1BP , where
P =

[
x1, . . . , xn

]
• Proof:

– V is a subspace so it has an independent complement W
– Let { v1, . . . , vk } be a basis for V and { vk+1, . . . , vn } be a basis for W, then { v1, . . . , vn } is a

basis for X

– V is L-invariant, so L(vi) ∈ V for i = 1, . . . , k so we can express each L(vi) =
k∑

i=1
ajiv

j +
n∑

l=k+1
0vl

* For i = k + 1, . . . , n we no longer have L(vi) since W is not L-invariant, so for these terms
the second sum does not have all zeros

– Recall column i of the matrix representation of L in this basis are the coordinates of L(vi), so

columns i = 1, . . . , k have the form



a1i

...
aki

0
...
0


, and the rest of the columns are nonzero in general

– Putting it all together, we get the form of A stated in the theorem
• The representation theorem allows us to split up a linear map into parts that are invariant and parts

that are not
• Consider ẋ = Ax and V as an A-invariant subspace of Rn, then the representation theorem tells us

that there exists a basis { v1, . . . , vn } of Rn such that the matrix representation of A has the form

Â =
[
Â11 Â12

0 Â22

]
– Now let P =

[
v1 · · · vn

]
, then AP = P Â, i.e. P −1AP = Â
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* Avj =
n∑

i=1
âijvi =

[
v1 · · · vn

]  âij

...
ânj

 = P

 âij

...
ânj


* Recall that for a matrix representation of a linear map, column i contains the coordinates of

the i-th basis vector after transformation by the linear map
• This means âij are the coordinates of Avj with respect to our basis
• The last column vector here is the jth column of Â

* Repeat this for every column
– Let z = P −1x so ż = P −1ẋ = P −1Ax = P −1AP z = Âz

– Then
[
ż1

ż2

]
=

[
Â11 Â12

0 Â22

] [
z1

z2

]
– Now ż1 = Â11z1 + Â12z2 and ż2 = Â22z2

– Notice now that the z2 subsystem is decoupled
– We will later make use of this to define the Kalman decomposition and the notion of stabilizability
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