

Lecture 11, Oct 3, 2025

Linear Maps and Matrix Representations

Definition

A function $f : \mathcal{X} \mapsto \mathcal{Y}$ is *injective* (one-to-one) if

$$\forall x_1, x_2 \in \mathcal{X}, f(x_1) = f(x_2) \implies x_1 = x_2$$

or contrapositively $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$, i.e. different inputs always map to different outputs.
 f is *surjective* (onto) if

$$\forall y \in \mathcal{Y}, \exists x \in \mathcal{X} \text{ s.t. } f(x) = y$$

i.e. the output reaches the entirety of \mathcal{Y} .

A function that is both injective and surjective is called *bijective*.

Definition

Let \mathcal{X}, \mathcal{Y} be vector spaces, then a function $L : \mathcal{X} \mapsto \mathcal{Y}$ is a *linear transformation* (or *linear map*) if

$$\forall x_1, x_2 \in \mathcal{X}, \lambda \in \mathbb{F}, L(x + \lambda y) = L(x) + \lambda L(y)$$

- Consider finite dimensional vector spaces \mathcal{X}, \mathcal{Y} where $\{x^1, \dots, x^n\}$ is a basis for \mathcal{X} and $\{y^1, \dots, y^m\}$ is a basis for \mathcal{Y}

– For each $x_i, L(x_i) \in \mathcal{Y}$ so it can be expressed as coordinates $L(x^i) = \sum_{j=1}^m a_{ji} y^j$

– From this, we can form $\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$ where column i contains the coordinates of $L(x^i)$

– Now consider $x \in \mathcal{X} \implies x = \sum_{i=1}^n c_i x^i$ and $y \in \mathcal{Y} \implies \sum_{j=1}^m d_j y^j$ such that $L(x) = y$, then:

$$* \quad L(x) = y$$

$$\implies L\left(\sum_{i=1}^n c_i x^i\right) = \sum_{j=1}^m d_j y^j$$

$$\implies \sum_{i=1}^n c_i L(x^i) = \sum_{j=1}^m d_j y^j$$

$$\implies \sum_{i=1}^n c_i \sum_{j=1}^m a_{ji} y^j = \sum_{j=1}^m d_j y^j$$

$$\implies \sum_{j=1}^m \left(\sum_{i=1}^n a_{ji} c_i \right) y^j = \sum_{j=1}^m d_j y^j$$

$$\implies \sum_{i=1}^n a_{ji} c_i = d_i$$

$$\implies \mathbf{A} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}$$

- Note the last step uses the uniqueness of coordinate representations

- The key idea is that we can perform a linear transformation between the abstract vector spaces \mathcal{X} and \mathcal{Y} by first going from \mathcal{X} to \mathbb{R}^n using a coordinate representation, then performing the transformation $\mathbb{R}^n \mapsto \mathbb{R}^m$ through a matrix multiplication by \mathbf{A} to obtain coordinates for a vector in \mathcal{Y} , then mapping back to \mathcal{Y} through the basis
- Note that a transformation has a matrix representation if and only if it is linear and maps between finite dimensional vector spaces

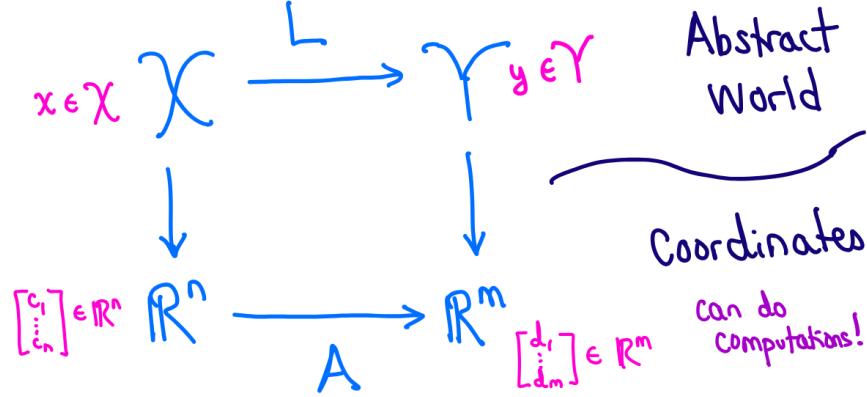


Figure 1: A matrix \mathbf{A} as the representation of a linear transformation L between two abstract vector spaces represented with coordinates.

- Example: The matrix representation of a counterclockwise rotation by θ in \mathbb{R}^2 , using the standard basis, is $\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$; what is the equivalent transformation, using the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$?
 - Denote the standard basis $\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$
 - We want to find a matrix $\bar{\mathbf{A}}$ that takes us from \mathbb{R}^2 represented with \mathcal{B} to another \mathbb{R}^2 represented with \mathcal{B} ; we know that \mathbf{A} takes us from \mathbb{R}^2 represented with \mathcal{E} to another \mathbb{R}^2 represented with \mathcal{E}
 - Suppose we can get from basis \mathcal{B} to basis \mathcal{E} through \mathbf{M} , then we can get back to basis \mathcal{B} by \mathbf{M}^{-1}
 - Therefore $\bar{\mathbf{A}}\mathbf{z} = \mathbf{M}^{-1}\mathbf{A}\mathbf{M}\mathbf{z}$ – first applying \mathbf{M} to get to \mathcal{E} , then applying \mathbf{A} in basis \mathcal{E} , and then applying \mathbf{M}^{-1} to get back to \mathcal{B}
 - * Therefore $\bar{\mathbf{A}} = \mathbf{M}^{-1}\mathbf{A}\mathbf{M}$ – a similarity transform
 - * Note the order that we write this is kind of reversed
 - Let \mathbf{z} have coordinates $\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$ in \mathcal{B} and $\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$ in \mathcal{E} , i.e. $\mathbf{z} = [\mathbf{b}_1 \ \mathbf{b}_2] \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = [\mathbf{e}_1 \ \mathbf{e}_2] \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$
 - We want to find \mathbf{M} such that $\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \bar{\xi}_1 \\ \bar{\xi}_2 \end{bmatrix} \implies \mathbf{M} = [\mathbf{e}_1 \ \mathbf{e}_2]^{-1} [\mathbf{b}_1 \ \mathbf{b}_2]$
 - Therefore $\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and we can use this to find $\bar{\mathbf{A}}$

Definition

Let $L : \mathcal{X} \mapsto \mathcal{Y}$ be a linear transformation. The *null space* or *kernel* of L is

$$\mathcal{N}(L) = \{ \mathbf{x} \in \mathcal{X} \mid L(\mathbf{x}) = \bar{0} \}$$

i.e. all the vectors that map to zero. This is a subspace.

The *range* or *image* of L is

$$\mathcal{R}(L) = \{ \mathbf{y} \in \mathcal{Y} \mid \exists \mathbf{x} \in \mathcal{X}, \mathbf{y} = L(\mathbf{x}) \}$$

i.e. all the vectors that can be reached via L . This is another subspace.

- Note for a subspace \mathcal{V} of \mathcal{X} , then we denote, in general, the range of \mathcal{V} under a linear transformation L as $L(\mathcal{V}) = \{ \mathbf{y} \in \mathcal{Y} \mid \exists \mathbf{x} \in \mathcal{V}, \mathbf{y} = L(\mathbf{x}) \}$

Definition

Let $L : \mathcal{X} \mapsto \mathcal{Y}$ be a linear transformation between finite dimensional vector spaces \mathcal{X}, \mathcal{Y} , then the *rank* of L is defined as

$$\text{rank}(L) = \dim(\mathcal{R}(L))$$

Theorem

$L : \mathcal{X} \mapsto \mathcal{Y}$ for finite dimensional \mathcal{X}, \mathcal{Y} satisfies the following properties:

1. L is injective if and only if $\mathcal{N}(L) = \{ \bar{0} \}$
2. $\dim(\mathcal{R}(L)) + \dim(\mathcal{N}(L)) = \dim(\mathcal{X})$

- The second property (rank-nullity) can be proven as follows:

- Let $k = \dim(\mathcal{N}(L))$ and $n = \dim(\mathcal{X})$; we want to show $n - k = \dim(\mathcal{R}(L))$
- Let $\text{span } \mathbf{x}^1, \dots, \mathbf{x}^k$ be a basis for $\mathcal{N}(L)$, and so $L(\mathbf{x}^i) = \bar{0}$ for $i \in [1, k]$
- Complete the basis such that $\text{span } \mathbf{x}^1, \dots, \mathbf{x}^k, \mathbf{x}^{k+1}, \dots, \mathbf{x}^n$ be a basis for \mathcal{X}
- Let $\mathbf{x} \in \mathcal{X}$, which has a unique coordinate representation $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{x}^i$ with respect to this basis

$$- L(\mathbf{x}) = L \left(\sum_{i=1}^n c_i \mathbf{x}^i \right)$$

$$= \sum_{i=1}^k c_i L(\mathbf{x}^i) + \sum_{i=k+1}^n c_i L(\mathbf{x}^i)$$

$$= \sum_{i=k+1}^n c_i L(\mathbf{x}^i)$$

- This suggests $\{ L(\mathbf{x}^i) \}$ for $i = k+1, \dots, n$ forms a basis for $\mathcal{R}(L)$

- To do this, we need to prove that they span $\mathcal{R}(L)$ and that they are linearly independent (in the notes)

Theorem

Let $L : \mathcal{X} \mapsto \mathcal{Y}$, then for any matrix representation \mathbf{A} of the linear map L ,

$$\dim(\mathcal{R}(L)) = \dim(\mathcal{R}(\mathbf{A})) \quad (1)$$

$$\dim(\mathcal{N}(L)) = \dim(\mathcal{N}(\mathbf{A})) \quad (2)$$

1. L is surjective if and only if $\text{rank}(\mathbf{A}) = \dim(\mathcal{R}(\mathbf{A})) = \dim(\mathcal{Y})$, i.e. all rows of \mathbf{A} are linearly independent (full row rank)
2. L is injective if and only if $\dim(\mathcal{N}(\mathbf{A})) = 0$, i.e. all columns of \mathbf{A} are linearly independent (full column rank)
3. L is bijective if and only if \mathbf{A} is square and invertible