Lecture 11, Oct 3, 2025

Linear Maps and Matrix Representations

A function f: X — Y is injective (one-to-one) if
Vo, e € X, f(z1) = f(z2) = 21 =22

or contrapositively x1 # 2o = f(x1) # f(x2), i.e. different inputs always map to different outputs.
f is surjective (onto) if
Yye Y, Jx e X st. f(x) =

i.e. the output reaches the entirety of ).

A function that is both injective and surjective is called bijective.

Let X, Y be vector spaces, then a function L : X — ) is a linear transformation (or linear map) if

Vi, 20 € X, A €T, L(z+ Ay) = L(x) + AL(y)

« Consider finite dimensional vector spaces X, where {z',..., 2™} is a basis for X and {y*,...,y™}
is a basis for Y

~ For each x;, L(x;) € Y so it can be expressed as coordinates L(z') = Zajiyj

aip -0 Gin
— From this, we can foom A= | : . : | where column ¢ contains the coordinates of L(z")

Am1 s Gmn

— Now consider x € X — z = Z crtandye)y — Z d;y’ such that L(x) =y, then:

© L=y . .
= L (i ) Zd]y

— Z L) = Zdjyj
‘ =
Z Jzyj = Zdjyj

o

— aj;C; = d
i=1
c1 dy
= A | =|:
Cn dpn

¢ Note the last step uses the uniqueness of coordinate representations



e The key idea is that we can perform a linear transformation between the abstract vector spaces X and
Y by first going from X to R™ using a coordinate representation, then performing the transformation
R™ — R™ through a matrix multiplication by A to obtain coordinates for a vector in ), then mapping
back to ) through the basis

o Note that a transformation has a matrix representation if and only if it is linear and maps between
finite dimensional vector spaces
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Figure 1: A matrix A as the representation of a linear transformation L between two abstract vector spaces
represented with coordinates.

« Example: The matrix representation of a counterclockwise rotation by 6 in R?, using the standard basis,
cos —sinf

1l (0
. _ . . . . . R o
is A sinfd  cosl } ; what is the equivalent transformation, using the basis B { [1} , [1} }

0’1
— We want to find a matrix A that takes us from R? represented with B to another R? represented
with B; we know that A takes us from R? represented with £ to another R? represented with £
— Suppose we can get from basis B to basis £ through M, then we can get back to basis B by M1
— Therefore Az = M~ AMz — first applying M to get to &, then applying A in basis £, and then
applying M ! to get back to B
* Therefore A = M"Y AM - a similarity transform
* Note the order that we write this is kind of reversed

— Let z have coordinates Fl] in B and Fl] in&, ie z=[by by Fl} =le1 e [61}

— Denote the standard basis £ = { F] , {O] }

& &) & &
— We want to find M such that El] =M El] = M = [61 62}71 [b1 bz}
2 2
— Therefore M = E (1)] and we can use this to find A



Definition

Let L : X — Y be a linear transformation. The null space or kernel of L is
NL)={xzeX|Lx)=0}

i.e. all the vectors that map to zero. This is a subspace.

The range or image of L is
R(L)={yeY|Iwe X, y=L(x)}

i.e. all the vectors that can be reached via L. This is another subspace.

e Note for a subspace V of X, then we denote, in general, the range of V under a linear transformation L
as LV)={yeY|IxeV,y=L(z)}

Definition

Let L : X — ) be a linear transformation between finite dimensional vector spaces X, ), then the
rank of L is defined as
rank(L) = dim(R(L))

Theorem

L : X — Y for finite dimensional X, ) satisfies the following properties:
1. L is injective if and only if N (L) = {0}
2. dim(R(L)) + dim(N (L)) = dim(X)

o The second property (rank-nullity) can be proven as follows:
~ Let k = dim(N (L)) and n = dim(&X); we want to show n — k = dim(R(L))
~ Let spanz’, ..., 2" be a basis for N(L), and so L(x') = 0 for i € [1, k]

— Complete the basis such that spanz',..., ", "1, ... & be a basis for X
n

— Let @ € X, which has a unique coordinate representation & = Z c;x’ with respect to this basis

- L(x)=1L (Z cm:’)

k
= Z ciL(z?) + Z ciL(z?)
i=1 i=k+1
n
= Z CiL(:IZi)
i=k+1
— This suggests { L(x")} for i = k +1,...,n forms a basis for R(L)
* To do this, we need to prove that they span R(L) and that they are linearly independent (in
the notes)



Theorem

Let L : X — Y, then for any matrix representation A of the linear map L,

dim(R(L)) = dim(R(A)) 1)
dim(N (L)) = dim(N(A)) 2)

1. L is surjective if and only if rank(A) = dim(R(A)) = dim(}), i.e. all rows of A are linearly
independent (full row rank)

2. L is injective if and only if dim(N(A)) =0, i.e. all columns of A are linearly independent (full
column rank)

3. L is bijective if and only if A is square and invertible
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