
Lecture 1, Sep 3, 2025
Theory of Linear Control Systems

• Dynamical systems (aka systems or dynamical processes) are mathematical models that describe how
quantities of interest evolve over time

– At a high level: input u(t), output y(t)
• We are interested in the theory of analysis (how is the system behaving?) and control (how can we

make the system behave well/better?) for linear time-invariant (LTI) systems in continuous time

Figure 1: Circuit example of a dynamical system.

• Consider the circuit above; let y be the voltage across the capacitor and u be the input voltage
– i = C̃

dy
dt

– By KVL: u− iR− y = 0 =⇒ u−RC̃
dy
dt − y = 0

– Rearrange: dy
dt = − 1

RC̃
y + 1

RC̃
u

– We now have an ODE representing the LTI system

Definition

A linear time-invariant system in state-space form is represented by the following:

ẋ = Ax(t) + Bu(t), t ≥ 0
y(t) = Cx(t) + Du(t)

where
x : [0, ∞) ∈ Rn(state)
u : [0, ∞) ∈ Rm(input)
y : [0, ∞) ∈ Rp(output)

The first is known as the state equation while the second is the measurement equation.
• A ∈ Rn×n is the system matrix.
• B ∈ Rn×m is the input matrix.
• C ∈ Rp×n is the output matrix.
• D ∈ Rp×m is the feedforward matrix.

• For our example system: x = y, ẋ = − 1
RC̃

x + 1
RC̃

u, y = x + u (note in this example we can fully
measure the state)

– A = − 1
RC̃

– B = 1
RC̃
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– C = 1
– D = 0

• Within dynamical systems we have several forms of representation:
– Model-based representation (for systems represented as ODEs)

* We are interested in continuous time, deterministic (no noise), LTI systems
– Data-based representation (for streams of data)
– Computer-based representation (for complicated systems that we cannot write down)

Lecture 2, Sep 5, 2025
Converting Between State Space and Transfer Functions

• Recall the transfer function representation: Y (s) = G(s)U(s) where U(s) = L {u(t)} (input), Y (s) =
L {y(t)} (output), the transfer function is G(s) = L {g(t)} (impulse response)

– Also known as the input-output representation
– Note this assumes zero initial conditions

• Using the circuit example: dy
dt + 1

RC̃
y = 1

RC̃
u

– Assuming zero initial conditions, L {y} and L {u} exist in the right-half complex plane

– Apply Laplace: sY (s) + 1
RC̃

Y (s) = 1
RC̃

U(s) =⇒
(
s+ 1

RC̃

)
Y (s) = 1

RC̃
U(s)

– Therefore G(s) =
1

RC̃

s+ 1
RC̃

– To go from state space to transfer function representation, we can take the Laplace transform and
rearrange into the Y (s) = G(s)U(s) form

• To transform transfer function to state space: Let G(s) = bms
m + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
= N(s)
D(s) and

assume ai, bi ∈ R (rational) and m < n (strictly proper)
– Break into 2 blocks, 1

D(s) and then N(s), and let the intermediate output be V (s); the first block

will give us our state equation, the second will give the measurement equation
– Block 1: V (s)

U(s) = 1
D(s) = 1

sn + an−1sn−1 + · · · + a1s+ a0
*
(
sn + an−1s

n−1 + · · · + a1s+ a0
)
V (s) = U(s)

* Inverse Laplace assuming zero initial conditions: dnv

dtn + an−1
dn−1v

dtn−1 + · · · + a1
dv
dt + a0v = u

* Let x =


x1
x2
...
xn

 =


v
dv
dt
...

dn−1v

dtn−1

 =⇒ ẋ =



dv
dt

d2v

dt2
...

dnv

dtn


=


x2
x3
...

−an−1xn − · · · − a1x2 − a0x1 + u



* A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1

 , B =


0
0
...
0
1


– Block 2: Y (s) = V (s)N(s) = (bms

m + · · · + b1s+ b0)V (s)

* Again inverse Laplace assuming zero IC (v(0) = v̇(0) = · · · = dm−1v

dtm−1 (0) = 0)

* Using the definition of x: y(t) = bm
dmv

dtm + · · · + b1
dv
dt + b0v = bmxm+1 + · · · + b1x2 + b0x1

• Here is where we use the m < n assumption

2



* Therefore: C =
[
b0 b1 · · · bm

]
, D = 0

– Note there are many other sets of A, B, C, D that satisfy this

Note

Given the state-space representation with x(0) = 0, we can show that the corresponding transfer
function is

G(s) = C(sI − A)−1B + D

Note G ∈ Rp×m is a matrix. This can be derived by taking the Laplace transform, then isolating and
substituting X.

Lecture 3, Sep 5, 2025
Linearization

• Consider a general nonlinear function ẋ = f(x, u), y = h(x, u) where f , h are differentiable; we want
to approximate this system by an LTI model by linearization around an equilibrium point

Definition

A pair (x∗, u∗) is an equilibrium condition if f(x∗, u∗) = 0. In this case x∗ is an equilibrium point
with control u∗.

• Consider the example of an actuated pendulum affected by gravity x =
[
θ

θ̇

]
, y = x1

– ẋ1 = x2

– ẋ2 = −mgl

J
sin x1 + u

J
(torque balance) where J is the moment of inertia

– f(x, u) =
[

x2

−mgl

J
sin x1 + u

J

]
– With a control of u∗ = 0, f(x∗, 0) = x∗

2

− mgl
J sin x∗

1
=
[
0
0

]
=⇒ x∗ =

[
kπ
0

]
, k ∈ Z

* Physically this corresponds to the pendulum being perfectly up or down with zero velocity

– With a control of u∗ = mgl, x2

− mgl
J sin x∗

1 + mgl
J

=
[
0
0

]
=⇒ x∗ =

[π
2 + 2kπ

0

]
* This corresponds to the applied torque being balanced by gravity

• Consider f(x) = f(x∗) + ∂f

∂x
(x∗)(x − x∗) + R(x) where R is a remainder term

– ∂f

∂x
=


∂f1

∂x1
· · · ∂f1

∂xn1
...

. . .
...

∂fn2

∂x1
· · · ∂fn2

∂n1

 ∈ Rn2×n1 is the Jacobian of f

– For differentiable f , lim
x→x∗

R(x)
∥x − x∗∥

= 0

• Let z∗ = (x∗, u∗), z = (x, u), then ẋ = f(z) = f(z∗)+ ∂f

∂z
(z∗)(z−z∗)+R(z) where ∂f

∂z
=
[
∂f

∂x

∂x

∂u

]
– Therefore ẋ ≈ ∂f

∂z
(z∗)(z − z∗) = ∂f

∂x
(x∗, u∗)(x − x∗) + ∂f

∂u
(x∗, u∗)(u − u∗)

* Note we used the fact that z∗ is an equilibrium condition
– Let δx = x − x∗, δu = u − u∗ then ˙δx = ẋ ≈ ∂f

∂x
(x∗, u∗)δx + ∂f

∂u
(x∗, u∗)δu
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– Similarly let δy = y − h(x∗, u∗) then δy ≈ ∂h

∂x
(x∗, u∗)δx + ∂h

∂u
(x∗, u∗)δu

– Therefore: A = ∂f

∂x
(x∗, u∗), B = ∂f

∂u
(x∗, u∗), C = ∂h

∂x
(x∗, u∗), D = ∂h

∂u
(x∗, u∗)

Summary

To linearize a general nonlinear system ẋ = f(x, u), y = h(x, u) where f , h are differentiable, let
(x∗, u∗) be an equilibrium condition, then a linear approximation is

δẋ = Aδx + Bδu

y = Cδx + Dδu

where δx = x − x∗, δu = u − u∗ and

A = ∂f

∂x
(x∗, u∗), B = ∂f

∂u
(x∗, u∗), C = ∂h

∂x
(x∗, u∗), D = ∂h

∂u
(x∗, u∗)

Lecture 4, Sep 10, 2025
The Matrix Exponential

Definition

Let A ∈ Rn×n, then the matrix exponential is defined as:

eA =
∞∑

k=0

1
k!A

k

Note A0 = In.

• To define the matrix exponential based on a series, we have to first define convergence for matrices, and
then show that this series definition of the matrix exponential converges

Definition

A series of matrices
∞∑

k=0
Mk converges if every element (Sn)ij of the partial sum Sn =

n∑
k=0

Mk

converges to a number as n → ∞, i.e. lim
n→∞

(Sn)ij = aij for all i, j.

Formally, we require
∀ϵ > 0, ∃N ∈ N s.t. n > N =⇒ |(Sn)ij − aij | < ϵ

Definition

A norm on Rn is a function ∥·∥ : Rn → R with the following properties:
1. ∥x∥ ≥ 0 ∀x ∈ Rn

2. ∥x∥ = 0 ⇐⇒ x = 0 ∈ Rn

3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ ∀x, y ∈ Rn

4. ∥λx∥ = |λ|∥x∥ ∀x ∈ Rn, ∀λ ∈ R
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Definition

The induced norm on Rn×n is a function ∥·∥ : Rn×n → R defined as

∥A∥ = max
{ x∈Rn|∥x∥=1 }

∥Ax∥

i.e. max norm of Ax over all x in the unit sphere. Note that this matrix norm is defined in terms of
(induced by) the vector norm.

• We can show that the induced norm is a valid norm, and it has property ∥Ak∥ ≤ ∥A∥k

Theorem

If the scalar series
∞∑

k=0
∥Mk∥ converges, then the matrix series

∞∑
k=0

Mk converges. Such a series is

called absolutely convergent.

• We will now prove that eA =
∞∑

k=0

1
k!A

k is absolutely convergent:

– We need to show that lim
n→∞

Sn = lim
n→∞

n∑
k=0

∥∥∥∥Ak

k!

∥∥∥∥ converges

– We will rely on the fact that an increasing sequence that is bounded above always converges

– Sn is an increasing sequence, since Sn+1 − Sn =
∥∥∥∥ An+1

(n+ 1)!

∥∥∥∥ = 1
(n+ 1)!∥An+1∥ ≥ 0

– To bound Sn from above, we will show that Sn ≤ e∥A∥

* Sn =
n∑

k=0

∥∥∥∥Ak

k!

∥∥∥∥ ≤
∞∑

k=0

1
k!∥Ak∥ ≤

∞∑
k=0

1
k!∥A∥k = e∥A∥

Theorem

The matrix exponential satisfies the following properties:
1. For any invertible P ∈ Rn×n, eP AP −1

= P eAP −1

2. For any A, B ∈ Rn×n such that AB = BA (commutativity) eA+B = eAeB = eBeA

3. (eA)−1 = e−A

4. For t ∈ R, d
dte

At = AeAt = eAtA

Lecture 5, Sep 12, 2025
Solving ẋ = Ax

• Consider the autonomous (i.e. no control input) LTI system, ẋ = Ax, x(0) = x0 ∈ Rn; we will show
that this is solved by eAtx0

• We will show that d
dte

At = eAtA
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– d
dte

At = lim
h→0

eA(t+h) − eAt

h

= lim
h→0

eAteAh − eAt

h
Since Ah and At commute

= lim
h→0

eAt(eAh − I)
h

= eAt lim
h→0

1
h

(
−I +

∞∑
k=0

(Ah)k

k!

)
Matrix exponential definition

= eAt lim
h→0

1
h

(
−I + I + h

∞∑
k=1

Akhk−1

k!

)
Take out first term and factor h

= eAt lim
h→0

∞∑
k=1

Akhk−1

k!

= eAt lim
h→0

(
Ah0

1! +
∞∑

k=2

Akhk−1

k!

)
Take out first term

= eAtA

– Note due to commutativity, we could’ve also taken out eAt on the right and get d
dte

At = AeAt

Theorem

The differential equation ẋ = Ax, x(0) = x0 ∈ Rn has the unique solution

x(t) = eAtx0, t ≥ 0

• To show existence:
– ẋ(t) = d

dt (e
Atx0) = d

dt (e
At)x0 = AeAtx0 = Ax(t)

– x(0) = e0x0 = Ix0 = x0
• To show uniqueness, let y(t) be any other solution to the differential equation; we want to show that

y = x

– d
dty(t) = Ay(t) and y(0) = x0

– We want to show y(t) = eAtx0, equivalently e−Aty(t) = e−AteAtx0 = x0
– Notice that both sides are constants, so we can try taking the derivative and seeing what we get

– d
dte

−Aty(t) =
(

d
dte

−At

)
y(t) + e−At d

dty(t)

= −e−AtAy(t) + e−AtAy(t)
= −eAt (−Ay(t) + Ay(t))
= 0

– Since e−Aty(t) has a zero derivative, it must be constant, so e−Aty(t) = e−0Ay(0) = y(0), but
y(0) = x0 since y is a solution to the differential equation

– Therefore we’ve shown e−Aty(t) = x0 and so y(t) = eAtx0, and thus x(t) = y(t)

Computing the Matrix Exponential
Matrix Exponential by Laplace Transform

• Consider ẋ = Ax, x(0) = x0 ∈ Rn, taking the Laplace transform:
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– L {ẋ} = L {Ax}
=⇒ sX(s) − x(0) = AX(s)
=⇒ sX(s) − AX(s) = x(0)
=⇒ (sI − A)X(s) = x0

=⇒ X(s) = (sI − A)−1x0

=⇒ x(t) = L−1 {(sI − A)−1}x0
• Because we know that the unique solution is x(t) = eAtx0, eAtx0 = L−1 {(sI − A)−1}x0

– Since this holds for all x0, it must be that eAt = L−1 {(sI − A)−1}
– Formally, to justify this, consider the case where x0 = ei, i.e. all zeros except 1 in the ith row;

substituting this into the equation we get that the ith column of the LHS must be equal to the ith
column of the RHS, so do this for all n columns

Matrix Exponential by Modal Decomposition (Eigenvectors & Eigenvalues)

• Recall that λ ∈ C is an eigenvalue of A if and only if det(λI − A) = det(A − λI) = 0; i.e. λ are the
roots of the characteristic polynomial of A

– To find eigenvectors corresponding to each λ, we find a basis for N (λI − A) where N denotes the
null space

Definition

If there exists a nonsingular matrix P ∈ Cn×n such that P −1AP is diagonal, then A ∈ Rn×n is
diagonalizable.

Theorem

A ∈ Rn×n is diagonalizable if and only if it has n linearly independent eigenvectors.

• Suppose A has n linearly independent eigenvectors, and let P =
[
v1 · · · vn

]
– AP =

[
Av1 · · · Avn

]
=
[
λ1v1 · · · λnvn

]
= P

λ1
. . .

λn

 = P Λ

– Since P has all linearly independent columns it is invertible, therefore P −1AP = Λ
• Note A is diagonalizable if it has n distinct eigenvalues (but diagonalizability does not always imply

distinct eigenvalues); A is also diagonalizable if it is symmetric (the spectral theorem)

Theorem

If A ∈ Rn×n is diagonalizable, then eA = P eΛP −1, where

eΛ =

e
λ1

. . .
eλn


and λi are eigenvalues of A.

• We can show by induction that An = (P ΛP −1)n = P ΛnP −1, then we can prove the above by
substituting this into the definition of the matrix exponential, and noting that taking a diagonal matrix
to a power is equivalent to taking each of the components to that power

7



Lecture 6, Sep 17, 2025
Computing the Matrix Exponential – Continued
Complex Eigenvalues

• Consider A =


1
2

−1
−1

; the eigenvectors and eigenvalues are
([

2
i− 1

]
, i
)

and
([

2
−i− 1

]
, −i
)

– Recall that eigenvector/eigenvalues always come in complex conjugate pairs, so for a 2x2 we can
take the conjugate to find the other one

– A has two distinct eigenvalues, so it is diagonalizable
• Direct calculation: eAt = P eΛtP −1

= · · ·

=
[
sin t+ cos t 2 sin t

− sin t cos t− sin t

]
– Note we applied Euler’s formula

• Alternatively, we can define P and Λ differently to avoid dealing with complex numbers

– Denote v =
[

2
i− 1

]
(the other eigenvector is v̄

– Let P̃ =
[
Re(v) Im(v)

]
=
[

2 0
−1 1

]
– Let Λ̃ =

[
0 1

−1 0

]
(the imaginary parts of λ1,λ2 are in the off-diagonal entries)

– We can show that e

[
a b

−b a

]
t

= eat

[
cos(bt) sin(bt)

− sin(bt) cos(bt)

]
* When we have complex eigenvalues, we see that this results in a rotation with a rate of decay

– Now we can compute P̃ eΛ̃tP̃ −1 and this leads to the same answer

Non-Diagonalizable Case – Jordan Forms

• Let A ∈ Rn×n have less than n linearly independent eigenvectors, i.e. it is non-diagonalizable; in this
case we cannot form an invertible P with the eigenvectors

– We will introduce the notion of generalized eigenvectors which allow us to form P in this case

• Recall that the characteristic polynomial of A is xA(s) = det(sI −A) =
σ∏

i=1
(s−λi)mi , where

σ∑
i=1

mi = n

– mi is the algebraic multiplicity of the eigenvalue λi

• The minimal polynomial ψA(s) is the polynomial of least degree such that ψA(A) = 0
– We can show that such a polynomial always exists

– The minimal polynomial has the form ψA(s) =
σ∏

i=1
(s− λi)li where li ≤ mi

* Note that normally s ∈ C; when we substitute A into the polynomial we replace λi with λiI
* This is the same form as the characteristic polynomial but we may not have to repeat each

term as many times, i.e. some of the information in the characteristic polynomial is redundant
– The li are known as the geometric multiplicity of λi

– Each li is also the number of linearly independent eigenvectors corresponding to λi (i.e. dim(N (λiI−
A)) where N denotes null space)

• Using this, we can decompose Cn into σ subspaces: Cn = N (λ1I − A)l1 ⊕ · · · ⊕ N (λσI − A)lσ

– σ denotes a direct sum, V ⊕W = { v + w | v ∈ V, w ∈ W }, where it is required that V ∩W = { 0 }
• Example: Let A ∈ R6×6 have the characteristic polynomial xA(s) = (s− λ)6 (i.e. λ repeated 6 times)

and ψA(s) = (s− λ)3 (i.e. only 3 independent eigenvectors)
– N (λI − A) = span { e1, e2, e3 } from the 3 independent eigenvectors
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– Let v1, v2 be linearly independent solutions to
{

(λI − A)v1 = −e1

(λI − A)v2 = −e2
and w1 be a solution to

(λI − A)w1 = −v1 and all of e1, e2, e3, v1, v2, w1 are linearly independent
* Multiplying by (λI − A) on both sides, the right hand side goes to zero, so we see that

v1, v2 ∈ N ((λI − A)2) and w1 ∈ N ((λI − A)3)
* In general, a generalized eigenvector is a vector such that (λI − A)nv = 0 where n ∈ N
* For each of the eigenvectors, we can create an entire chain of these generalized eigenvectors

– Now notice that if we rearrange the expressions we get Av1 = λv1 + e1, and Aw1 = λw1 + v1
(and so on for longer chains)

– Let P =
[
e1 v1 w1 e2 v2 e3

]
* We group together the chain related to e1, then the chain of e2 and so on

– AP =
[
λe1 λv1 + e1 λw1 + v1 λe2 λv2 + e2 λe3

]
= P


λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ 1 0
0 0 0 0 λ 0
0 0 0 0 0 λ

 = P J

– The resulting matrix J is the Jordan form, which is block diagonal; each of the blocks is known as
a Jordan block

* The number of Jordan blocks is always equal to the number of linearly independent eigenvectors
– Note there are multiple other forms that are possible, depending on how we choose to do the

generalized eigenvectors: we can have 3 Jordan blocks of size 2, 1 block of size 4 and 2 blocks of
size 1; as long as we only have 3 blocks, any combination is possible

* Also, in general we have multiple distinct eigenvalues, so we have a block for each distinct
eigenvalue, and then within each block we have a block for each linearly independent eigenvector
for that eigenvalue (and its chain)

– In this way we can generalize the notion of diagonalizability to matrices without a full set of
independent eigenvectors

Definition

The Jordan form of A ∈ Rn×n has the form

P −1AP = J =

Jλ1

. . .
Jλk


where k is the number of distinct eigenvalues, and each Jλi has form

Jλi
=

J1
λi

. . .
J li

λi

 ∈ Cmi×mi

where mi is the algebraic multiplicity of λi (number of times it appears as a root in the characteristic
equation) and li is its geometric multiplicity (number of linearly independent eigenvectors for λi); each
J j

λi
takes the form

J j
λi

=


λi 1

λi
. . .
. . . 1

λi


with λi repeated along the diagonal, and 1s above each λ.
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• With this we can now write eAt = P eJtP −1 (following the same proof as the case of normal diagonal-
ization for A)

– The block diagonal form means eJt =

e
Jλ1 t

. . .
eJλk

t



– Similarly eJλi
t =


eJ1

λi

. . .

e
J

li
λi


– J j

λi
t = (λiI + N) t where N is a matrix with 1s above the diagonal

– Therefore eJj
λi

t = eλiteNt

* N is a nilpotent matrix, so we can show that eventually the higher order terms in the infinite
series expansion for eNt all go to zero

– We can show that eNt has form


1 t · · · tp−1

(p− 1)!
. . . . . .

...
1 t

1

 ∈ Cp×p

* Here p is the size of the block J j
λi

(i.e. the size of the chain of generalized eigenvectors
corresponding to λi), which is not unique

Lecture 7, Sep 19, 2025
Reasoning About System Behaviour With Eigenvalues and Eigenvectors

• Consider a system ẋ = Ax, x(0) = x0
– Assume that A is diagonalizable, so the solution is x(t) = eAtx0 = P eΛtP −1x0

• Consider the transformed coordinate space z(t) = P −1x(t); how does the system look in this coordinate
system?

– ż = P −1ẋ(t) = P −1Ax(t) = P −1P ΛP −1x(t) = Λz(t)
– Since Λ is diagonal, we get żi(t) = λizi(t), in other words, a set of n decoupled linear differential

equations
– Each one is solved by zi(t) = eλitzi(0), resulting in much easier to analyze system behaviour

– x(t) = P z(t) =
n∑

i=1
vizi(t) =

n∑
i=1

vie
λitzi(0)

* Each term of the sum is called the i-th mode of x(t); the entire operation is known as a modal
decomposition

* We denote hi(t) =
n∑

i=1
vie

λitzi(0)

• Geometrically, we can imagine drawing each of the vi as a line; if the associated λi is negative, solutions
shrink and go towards 0 along this line; conversely if λi is positive, solutions expand and go to infinity
along the line

– For any initial condition x0 we can decompose it into components along each vi, and each of those
components will evolve according to λi (towards or away from the origin at a speed determined by
the magnitude)

– In the z coordinate system this is easier to see since the vi are now along the coordinate axes

System Behaviour According to Eigenvalues

• With the above knowledge we can now categorize systems according to their eigenvalues
• Case 1: Real and nonzero eigenvalues

10



Figure 2: Illustrations of how solutions evolve in the x coordinate system, for an example where λ1 < 0,λ2 > 0.

– If all eigenvalues are less than 0, we have a stable node since all initial conditions converge towards
zero

– If all eigenvalues are greater than 0, we have an unstable node since all initial conditions explode
to infinity (except for 0, which stays at 0)

– If eigenvalues have mixed signs, we get a saddle point as initial conditions will move towards zero
along one axis but diverge away from it on another axis; again, zero is the only initial condition
that does not diverge

• Case 2: Complex conjugate eigenvalues λ1 = a+ ib,λ2 = a− ib (recall that the solution in this case is

eat

[
cos(bt) sin(bt)

− sin(bt) cos(bt)

]
)

– If a < 0, we get a stable focus as solutions spiral in towards zero
– If a > 0, we get an unstable focus as solutions spiral outwards from zero towards infinity
– If a = 0, we get a centre since all solutions stay orbiting the origin in a circle, not converging or

diverging
– In all cases, the magnitude determines the rate of spiral

• Case 3: One nonzero eigenvalue
– The eigenvector with zero eigenvalue forms a line, where every point on the line is an equilibrium
– If the other eigenvalue is less than zero, all solutions converge towards that line; if the other

eigenvalue is greater than zero then all solutions diverge from the line
– All initial conditions follow a straight path towards the equilibrium line, defined by the other

eigenvector (nonzero eigenvalue)

11



Figure 3: Behaviour for complex eigenvalues.

Lecture 8, Sep 24, 2025
Solution to a Non-Autonomous LTI System

Theorem

The solution to the LTI system
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is given by

x(t) = eAtx0 +
ˆ t

0
eA(t−τ)Bu(τ) dτ

• We can show the initial condition is satisfied trivially

• ẋ = d
dt

(
eAtx0 +

ˆ t

0
eA(t−τ)Bu(τ) dτ

)
= AeAtx0 + A

ˆ t

0
eA(t−τ)Bu(τ) dτ + Bu(t)

= A

(
eAtx0 +

ˆ t

0
eA(t−τ)Bu(τ) dτ

)
+ Bu(t)

= Ax(t) + Bu(t)

– Note d
dt

ˆ t

0
eA(t−τ)Bu(τ) dτ = A

ˆ t

0
eA(t−τ)Bu(τ) dτ + Bu(t) by Leibniz rule

* d
dx

ˆ b(x)

a(x)
f(x, t) dt = f(x, b(x)) d

dxb(x) − f(x, a(x)) d
dxa(x) +

ˆ b(x)

a(x)

∂

∂x
f(x, t) dt

• Note due to the fundamental theorem of differential equations (the existence and uniqueness theorem),
as our system is linear (and therefore continuous), we know that the solution above is the unique
solution

12



Lecture 9, Sep 24, 2025
Stability

Definition

A system ẋ = Ax, x(0) = x0 is said to be stable if for every x0 ∈ Rn, the solution x(t) = eAtx0 is
bounded, i.e.

∃M < ∞ s.t. ∥x(t)∥ ≤ M , ∀t ≥ 0

The system is asymptotically stable if for every x0 ∈ Rn,

lim
t→∞

x(t) = 0 ∈ Rn

Theorem

The system ẋ = Ax, x(0) = x0 is asymptotically stable if and only if Re(λi) < 0 for all eigenvalues λi

of A.

• The intuition here is that we can decouple the system using the eigenvectors like we showed before, and
if all eigenvalues have negative real parts, then all components must decay to 0

• Asymptotic stability is equivalent to eAt converging to 0 as t → ∞ (since this is the unique solution)
– Recall that using the Jordan form, this is equivalent to eJλi

t converging to 0 for each i, which can
be expanded to eλitN where N is a matrix of polynomials of t

– Suppose all Re(λi) < 0; then eλit times any polynomial of t will decay to 0 as t → ∞ for all i,
since the exponential grows faster than any polynomial

– Therefore every term in every Jordan block will converge to 0, and so eAt converges to 0 and the
system is asymptotically stable

• We can also define some notions of stability when the input u is involved:

Definition

The system
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is bounded-input-bounded-output stable (BIBO stable) if, when x0 = 0, as long as the input u(t) is
bounded, the output y(t) is bounded.

The system

y(t) =
ˆ t

0
h(t− τ)u(τ) dτ

where h : [0, ∞) 7→ Rm×p is BIBO stable if for all bounded u(t), y(t) is also bounded. Note this
model implicitly assumes zero inital conditions.

Definition

The system
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is input-output stable if for all inital conditions x0 ∈ Rn, a bounded u(t) implies a bounded y(t).
Note input-output stability implies BIBO stability.

13



Theorem

If ẋ = Ax is asymptotically stable, then for any B, C, D, the system

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

is both BIBO and input-output stable.

• Recall that PSD for a real symmetric matrix means vT P v ≥ 0 for all v ∈ Rn, and positive definite
means vT P v > 0 for all nonzero v

– PSD is sometimes denoted P ∈ S+
n ; positive definite is denoted P ∈ Sn

• For complex v, v∗P v > 0 for positive definite P , and greater than or equal to zero for PSD P (v∗

denotes a conjugate-transpose or Hermitian transpose)
– v∗P v = (x + iy)∗P (x + iy)

= (xT − iyT )P (x + iy)
= xT P x − iyT P x + ixT P y − i2yT P y

= xT P x + yT P y
* Since P is positive definite (or PSD) the last two remaining terms are both positive (or

nonnegative for PSD)
* Note that yT P x is a scalar, so we can take its transpose, and since P is symmetric we can

show the expression is equal to xT P y and so the middle terms cancel

Theorem

Let P ∈ Rn×n be symmetric; then P is positive definite if and only if all its eigenvalues are positive;
P is positive semidefinite if and only if all its eigenvalues are non-negative. This result is sometimes
known as the spectral theorem.
Note since P is real and symmetric, all eigenvalues are real.

This theorem also applies for negative (semi-)definite matrices and negative (nonpositive) eigenvalues.

Theorem

Let A ∈ Rn×n and suppose there exists a symmetric positive definite matrix P such that

Q = −AT P − P A

is also positive definite, then ẋ = Ax is asymptotically stable. Q is known as the continuous-time
Lyapunov operator.

• Let e ∈ Cn be an eigenvector of A; we know e∗Qe = e∗(−AT P − P A)e > 0 and we can expand the
right hand side, using Ae = λe, to show that all the eigenvalues of A have negative real parts

• In discrete time, the analogous equation is xk+1 = Axk, which turns out to be asymptotically stable if
and only if |λi| < 1 for all eigenvalues of A

– The analogous definition of Q is Ld(P ) = P − AT P A and it also holds that if there exists a
P that makes this positive definite, then A has all eigenvalues with magnitude less than 1 and
therefore the system is stable

• Now consider A with eigenvalues less than or equal to zero; if we take its Jordan form and expand eJt,
we find that in some Jordan blocks we only have eλt, but in other blocks we have terms with eλt times
a polynomial of t

– We allow the blocks that only have eλt to have a zero eigenvalue, since this becomes a constant
– However the blocks containing eλt times a polynomial must have a negative eigenvalue, because
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otherwise that term will grow to infinity as t → ∞
– This means for all Jordan (sub-)blocks that are bigger than 1 × 1, its λ value must be strictly

negative
– Recall that we get bigger Jordan blocks when the algebraic multiplicity is greater than the geometric

multiplicity for some eigenvalue
– This is the intuition for the next theorem

Theorem

ẋ = Ax is stable if and only if Re(λi) ≤ 0 for all i, and if for all eigenvalues that have Re(λi) = 0, the
algebraic multiplicity equals the geometric multiplicity for that eigenvalue.

• To prove this, we equate stability to eAt being bounded, which is equal to eJt being bounded, which we
can consider separately for negative and zero eigenvalues:

– Re(λj) < 0: then all lim
t→∞

eJλj
t = 0 since the exponential grows faster than all polynomials

– Re(λj) = 0: eJλj
t is bounded if and only if it has no polynomials in t; this only happens if we have

Jordan blocks of size 1, which happens if and only if the geometric and algebraic multiplicities are
equal

• Example: A =
[
λ 1
0 λ

]
; under what conditions is ẋ = Ax stable? Asymptotically stable?

– For both stability and asymptotic stability, we require λ < 0, since for this matrix λ has algebraic
multiplicity of 2 but geometric multiplicity of 1

– We can see this from eAt =
[
eλt teλt

0 eλt

]
since the matrix is already in Jordan form

Theorem

If Re(λi) > 0 for any eigenvalue λi of A, then ẋ = Ax is unstable.

Lecture 10, Oct 1, 2025
Linear Algebra Concepts

Definition

A vector space X over a field F (can be e.g. R or C) is a set of elements (vectors) with 2 operations:
vector addition (between two elements of X ) and scalar multiplication (between an element of X and
an element of the field F), with the properties:

• Closure: v + w ∈ X and λv ∈ X
• Commutativity: v + w = w + v
• Associativity: (v + w) + z = v + (w + z) and (λµ)v = λ(µv)
• Additive identity: ∃0̄ ∈ X such that v + 0̄ = v
• Multiplicative identity: ∃1 ∈ F and 0 ∈ F such that 1v = v and 0v = 0̄
• Additive inverse: ∃(−v) ∈ X such that v + (−v) = 0̄
• Distributivity: λ(v + w) = λv + λw and (λ+ µ)v = λv + µv

15



Definition

Let X be a vector space over F and let x1, . . . ,xm ∈ X , then the span of these vectors is

span {x1, . . . ,xm } =
{

m∑
i=1

cixi

∣∣∣∣∣ ci ∈ F

}

i.e. it is the set formed by all possible linear combinations of vectors in the set.

Definition

A vector space X is finite-dimensional if it can be expressed as

X = span {x1, . . . ,xm }

where m ∈ N is a finite integer.

The smallest m that satisfies this relation is the dimension of X .

• Some examples: Rn,Rm×n, and the vector space of n-th degree polynomials Pn are all finite dimensional;
but the vector space of square-integrable functions in [a, b], L2([a, b]) is not finite dimensional

Definition

A set of vectors {x1, . . . ,xn } is linearly independent if

∀c1, . . . , cm ∈ F,
m∑

i=1
cixi = 0̄ ⇐⇒ c1 = · · · = cm = 0

i.e. the only linear combination of the vectors to get the zero vector is all zeros.

Definition

A set of vectors {x1, . . . ,xm } ⊆ X is a basis for X if X = span {x1, . . . ,xm } and all vectors in the
set are linearly independent.

Definition

Let X be a vector space over F and let {x1, . . . ,xm } be a basis for X ; then any vector v ∈ X can be
written as v = c1x1 + · · · + cmxm, where  c1

...
cm

 ∈ Fm

is the coordinate representation of v under this basis. It can be shown that the values of c1, . . . , cm

are uniquely determined by v and the basis {x1, . . . ,xm }.
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Definition

A subset V ⊆ X is a subspace if it is closed, i.e. x, y ∈ V ,λ ∈ F =⇒ x+ λy ∈ V and if it contains the
zero vector, 0̄ ∈ V.

The direct sum of two subspaces is

V ⊕ W = { v + w | v ∈ V,w ∈ W }

which can be shown to be another subspace.

Definition

Two subspaces V , W of X are independent if V ∩ W = { 0̄X }, i.e. their intersection contains only zero.

Theorem

Let V be a subspace of the vector space X , then V has an independent complement, which is another
subspace which is independent from V and sums with V to get the entirety of X , i.e.

∃W ⊆ X s.t. V ∩ W = { 0̄X } , V ⊕ W = X

Not to be confused with an orthogonal complement.

Definition

Let X be a vector space over R. An inner product on X is an operation ⟨·, ·⟩ : X × X 7→ R with the
following properties:

1. ⟨x, y⟩ = ⟨y,x⟩ (this property requires a conjugate for C)
2. ⟨λx1 + x2, y⟩ = λ⟨x1, y⟩ + ⟨x2, y⟩
3. ⟨x,x⟩ ≥ 0
4. ⟨x,x⟩ = 0 ⇐⇒ x = 0̄

If ⟨x, y⟩ = 0, then x and y are orthogonal under the inner product ⟨·, ·⟩.

Combining a vector space with an inner product, (X , ⟨·, ·⟩) is called an inner product space.

• For example, Rn and ⟨x, y⟩ = xT y is an inner product space

– On L2([a, b]) we can define an inner product ⟨f , g⟩ =
ˆ b

a

f(τ)g(τ) dτ

Definition

Let (X , ⟨·, ·⟩) be an inner product space and let V ⊆ X be a subspace. Then the orthogonal complement
of V in X is the subspace

V⊥ = {w ∈ X | ⟨w, v⟩ = 0, ∀v ∈ V }

Note V ⊕ V⊥ = X .
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Lecture 11, Oct 3, 2025
Linear Maps and Matrix Representations

Definition

A function f : X 7→ Y is injective (one-to-one) if

∀x1,x2 ∈ X , f(x1) = f(x2) =⇒ x1 = x2

or contrapositively x1 ̸= x2 =⇒ f(x1) ̸= f(x2), i.e. different inputs always map to different outputs.
f is surjective (onto) if

∀y ∈ Y, ∃x ∈ X s.t. f(x) = y

i.e. the output reaches the entirety of Y.

A function that is both injective and surjective is called bijective.

Definition

Let X , Y be vector spaces, then a function L : X 7→ Y is a linear transformation (or linear map) if

∀x1,x2 ∈ X ,λ ∈ F, L(x+ λy) = L(x) + λL(y)

• Consider finite dimensional vector spaces X , Y where {x1, . . . ,xn } is a basis for X and { y1, . . . , ym }
is a basis for Y

– For each xi, L(xi) ∈ Y so it can be expressed as coordinates L(xi) =
m∑

j=1
ajiy

j

– From this, we can form A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 where column i contains the coordinates of L(xi)

– Now consider x ∈ X =⇒ x =
n∑

i=1
cix

i and y ∈ Y =⇒
m∑

j=1
djy

j such that L(x) = y, then:

* L(x) = y

=⇒ L

(
n∑

i=1
cix

i

)
=

m∑
j=1

djy
j

=⇒
n∑

i=1
ciL(xi) =

m∑
j=1

djy
j

=⇒
n∑

i=1
ci

m∑
j=1

ajiy
j =

m∑
j=1

djy
j

=⇒
m∑

j=1

(
n∑

i=1
ajici

)
yj =

m∑
j=1

djy
j

=⇒
n∑

i=1
ajici = di

=⇒ A

c1
...
cn

 =

d1
...
dn


• Note the last step uses the uniqueness of coordinate representations
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• The key idea is that we can perform a linear transformation between the abstract vector spaces X and
Y by first going from X to Rn using a coordinate representation, then performing the transformation
Rn 7→ Rm through a matrix multiplication by A to obtain coordinates for a vector in Y , then mapping
back to Y through the basis

• Note that a transformation has a matrix representation if and only if it is linear and maps between
finite dimensional vector spaces

Figure 4: A matrix A as the representation of a linear transformation L between two abstract vector spaces
represented with coordinates.

• Example: The matrix representation of a counterclockwise rotation by θ in R2, using the standard basis,

is A =
[
cos θ − sin θ
sin θ cos θ

]
; what is the equivalent transformation, using the basis B =

{ [
1
1

]
,
[
0
1

] }
?

– Denote the standard basis E =
{ [

1
0

]
,
[
0
1

] }
– We want to find a matrix Ā that takes us from R2 represented with B to another R2 represented

with B; we know that A takes us from R2 represented with E to another R2 represented with E
– Suppose we can get from basis B to basis E through M , then we can get back to basis B by M−1

– Therefore Āz = M−1AMz – first applying M to get to E , then applying A in basis E , and then
applying M−1 to get back to B

* Therefore Ā = M−1AM – a similarity transform
* Note the order that we write this is kind of reversed

– Let z have coordinates
[
ξ̄1
ξ̄2

]
in B and

[
ξ1
ξ2

]
in E , i.e. z =

[
b1 b2

] [ξ̄1
ξ̄2

]
=
[
e1 e2

] [ξ1
ξ2

]
– We want to find M such that

[
ξ1
ξ2

]
= M

[
ξ̄1
ξ̄2

]
=⇒ M =

[
e1 e2

]−1 [
b1 b2

]
– Therefore M =

[
1 0
1 1

]
and we can use this to find Ā

19



Definition

Let L : X 7→ Y be a linear transformation. The null space or kernel of L is

N (L) = { x ∈ X | L(x) = 0̄ }

i.e. all the vectors that map to zero. This is a subspace.

The range or image of L is

R(L) = { y ∈ Y | ∃x ∈ X , y = L(x) }

i.e. all the vectors that can be reached via L. This is another subspace.

• Note for a subspace V of X , then we denote, in general, the range of V under a linear transformation L
as L(V) = { y ∈ Y | ∃x ∈ V, y = L(x) }

Definition

Let L : X 7→ Y be a linear transformation between finite dimensional vector spaces X , Y, then the
rank of L is defined as

rank(L) = dim(R(L))

Theorem

L : X 7→ Y for finite dimensional X , Y satisfies the following properties:
1. L is injective if and only if N (L) = { 0̄ }
2. dim(R(L)) + dim(N (L)) = dim(X )

• The second property (rank-nullity) can be proven as follows:
– Let k = dim(N (L)) and n = dim(X ); we want to show n− k = dim(R(L))
– Let span x1, . . . , xk be a basis for N (L), and so L(xi) = 0̄ for i ∈ [1, k]
– Complete the basis such that span x1, . . . , xk, xk+1, . . . , xn be a basis for X

– Let x ∈ X , which has a unique coordinate representation x =
n∑

i=1
cix

i with respect to this basis

– L(x) = L

(
n∑

i=1
cix

i

)

=
k∑

i=1
ciL(xi) +

n∑
i=k+1

ciL(xi)

=
n∑

i=k+1
ciL(xi)

– This suggests {L(xi) } for i = k + 1, . . . ,n forms a basis for R(L)
* To do this, we need to prove that they span R(L) and that they are linearly independent (in

the notes)
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Theorem

Let L : X 7→ Y, then for any matrix representation A of the linear map L,

dim(R(L)) = dim(R(A)) (1)
dim(N (L)) = dim(N (A)) (2)

1. L is surjective if and only if rank(A) = dim(R(A)) = dim(Y), i.e. all rows of A are linearly
independent (full row rank)

2. L is injective if and only if dim(N (A)) = 0, i.e. all columns of A are linearly independent (full
column rank)

3. L is bijective if and only if A is square and invertible

Lecture 12, Oct 10, 2025
Invariant Subspaces and the Representation Theorem

Definition

A subspace V ∈ Rn is A-invariant for A ∈ Rn×n if and only if

∀x ∈ V, Ax ∈ V

i.e. any vector in the subspace stays within the subspace under a linear transformation A. We denote
this by AV ⊆ V.

• Note this is equivalent to ∀x0 ∈ V, eAtx0 ∈ V
• Some examples:

– N (A), R(A) are both A-invariant
– If w1, . . . , wn ∈ Rn are eigenvectors of N , then span w1, . . . , wn is A-invariant

Theorem

Representation theorem: Let X be a finite dimensional vector space over F (dim(X ) = n) and let
L : X 7→ X be a linear map, and let V be an L-invariant subspace of X (dim(V) = k). Then there
exists a basis { x1, . . . , xn } for X such that the matrix representation of L in this basis has the form

A =
[

A11 A12
0(n−k)×k A22

]
A11 ∈ Fk×k, A12 ∈ Fk×(n−k), A22 ∈ F(n−k)×(n−k)

• Note that if L has a matrix representation B in the standard basis, then A = P −1BP , where
P =

[
x1, . . . , xn

]
• Proof:

– V is a subspace so it has an independent complement W
– Let { v1, . . . , vk } be a basis for V and { vk+1, . . . , vn } be a basis for W, then { v1, . . . , vn } is a

basis for X

– V is L-invariant, so L(vi) ∈ V for i = 1, . . . , k so we can express each L(vi) =
k∑

i=1
ajiv

j +
n∑

l=k+1
0vl

* For i = k + 1, . . . ,n we no longer have L(vi) since W is not L-invariant, so for these terms
the second sum does not have all zeros

– Recall column i of the matrix representation of L in this basis are the coordinates of L(vi), so
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columns i = 1, . . . , k have the form



a1i

...
aki

0
...
0


, and the rest of the columns are nonzero in general

– Putting it all together, we get the form of A stated in the theorem
• The representation theorem allows us to split up a linear map into parts that are invariant and parts

that are not
• Consider ẋ = Ax and V as an A-invariant subspace of Rn, then the representation theorem tells us

that there exists a basis { v1, . . . , vn } of Rn such that the matrix representation of A has the form

Â =
[
Â11 Â12

0 Â22

]
– Now let P =

[
v1 · · · vn

]
, then AP = P Â, i.e. P −1AP = Â

* Avj =
n∑

i=1
âijvi =

[
v1 · · · vn

]  âij

...
ânj

 = P

 âij

...
ânj


* Recall that for a matrix representation of a linear map, column i contains the coordinates of

the i-th basis vector after transformation by the linear map
• This means âij are the coordinates of Avj with respect to our basis
• The last column vector here is the jth column of Â

* Repeat this for every column
– Let z = P −1x so ż = P −1ẋ = P −1Ax = P −1AP z = Âz

– Then
[
ż1

ż2

]
=
[
Â11 Â12

0 Â22

] [
z1

z2

]
– Now ż1 = Â11z1 + Â12z2 and ż2 = Â22z2

– Notice now that the z2 subsystem is decoupled
– We will later make use of this to define the Kalman decomposition and the notion of stabilizability

Lecture 13, Oct 15, 2025
Controllability

Definition

An LTI system ẋ = Ax + Bu is completely controllable (or just controllable) if, for some positive
time T , for all possible initial and final states x0, xf ∈ Rn, there exists some piecewise continuous
input u(t), t ∈ [0,T ] that brings the system from the initial state to the final state, i.e.

xf = x(T ) = eAT x0 +
ˆ T

0
eA(T −τ)Bu(τ) dτ = eAT + Lc(u(·))

• Lc(u(·)) is a map from real piecewise continuous functions to Rn, the impact of the input on the final
state (compared to just an autonomous system)

• Let R̄T (x0) = { xf ∈ Rn | ∃u : [0,T ] 7→ Rm, xf = eAT x0 + Lc(u(·)) }
– This denotes the set of all possible final states xf that we can reach from an initial state x0 with

piecewise continuous inputs u
• Lemma: The LTI system (A, B) is completely controllable if and only if R̄T (0) = Rn, or equivalently

R(Lc) = Rn

– Assume (A, B) is completely controllable, then we can let x0 = 0, and there exists u(t) such that
we can reach any xf ∈ Rn; therefore by definition, R̄T (0) = Rn
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Coordinate and Feedback Transformations

• Consider the coordinate transformation z = P −1x =⇒ ż = P −1ẋ

= P −1(Ax + Bu)
= P −1AP z + P −1Bu

– Therefore the coordinate transform does (A, B) → (P −1AP , P −1B)
• A feedback transformation is u = Kx + v where v is the new input, for some feedback matrix K (now

the system’s input contains feedback based on its state)
– ẋ = Ax + Bu = Ax + B(Kx + v) = (A + BK)x + Bv
– The feedback transform does (A, B) → (A + BK, B)

• We will see that coordinate and feedback transformations do not affect the controllability of a system
– This is useful because we can see the system under a different transformation, which may lead to

more insights, and obtain information applicable to the original system

Theorem

For any nonsingular P , the system (A, B) is completely controllable if and only if (P −1AP , P −1B)
is completely controllable.
For any K, the system (A, B) is completely controllable if and only if (A + BK, B) is completely
controllable.

In other words, controllability is invariant under coordinate and feedback transformations.

• Proof for coordinate transform invariance:
– From the lemma, completely controllable (A, B) means R(Lc) = Rn

– Consider the transformed L̃c(u(·)) =
ˆ T

0
eP −1AP (T −τ)P −1Bu(τ) dτ so R(L̃c) = Rn if and only

if the transformed system is controllable
– The idea is that Lc and L̃c are related by a nonsingular matrix, so they should have the same

range space (similar to how B and P B have the same range space for nonsingular P )

Controllability Matrix

Theorem

Cayley-Hamilton Theorem: Let A ∈ Rn×n have characteristic polynomial

det(sI − A) = sn + an−1s
n−1 + · · · + a0

then A satisfies
An + an−1An−1 + · · · + a0I = 0n×n

i.e. every square matrix satisfies its own characteristic equation. This allows us to express An and
any higher powers of A as a linear combination of I, A, . . . , An−1.

Definition

The controllability matrix for a system (A, B) is defined as

Qc =
[
B AB · · · An−1B

]
∈ Rn×nm

The system (A, B) is completely controllable if and only if R(Qc) = Rn, or rank(Qc) = n.

• Proof (rank(Qc) = n =⇒ (A, B) is controllable):
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– Proof by contradiction: first assume the negation of the statement, i.e. let rank(Qc) = n but
(A, B) not controllable; we will show that this shows rank(Qc) ̸= n, leading to a contradiction

– Let L̂c such that Lc(u(·)) =
ˆ T

0
eA(T −τ)Bu(τ) dτ = eAT

ˆ T

0
e−Aτ Bu(τ) dτ = eAT L̂c(u(·))

* (A, B) not controllable means dim(R(Lc)) < n
* Since eAT is always invertible, rank(Lc) = rank(L̂c) =⇒ dim(R(L̂c)) < n

– R(L̂c) has an orthogonal component R(L̂c)⊥ where R(L̂c)⊥ ⊕ R(L̂c) = Rn, and dim(R(L̂c)) < n
means there exists a nonzero v ∈ R(L̂c)⊥ orthogonal to all elements in L̂c

– Then for any any piecewise continuous u(·) : [0,T ] 7→ Rm, we have vT

ˆ T

0
e−Aτ Bu(τ) dτ = 0

* Consider the control input ui,s(t) =
{

ei t ∈ [0, s]
0 t ∈ (s,T ])

for s ∈ [0,T ] and i = 1, . . . ,m

• Note ei denotes a vector with a 1 in the ith element and all 0s everywhere else
• This input picks out the ith column of B for t ∈ [0, s]

* Therefore 0 = vT

ˆ T

0
e−Aτ Bui,s(τ) dτ = vT

ˆ s

0
e−Aτ bidτ holds ∀s ∈ [0,T ]

• d
ds

(
vT

ˆ s

0
e−Aτ bidτ

)
= vT e−Asbi = 0, evaluate at s = 0 gives us vT bi = 0

• d2

ds2

(
vT

ˆ s

0
e−Aτ bidτ

)
= −vT Ae−Asbi = 0, again at s = 0 gives vT Abi = 0

• Do this for up to the nth derivative, then vT Akbi = 0 for all k = 0, . . . ,n− 1
* Altogether vT

[
bi Abi · · · An−1bi

]
= 0 ∈ R1×n

* Repeat for all i, then vT
[
B AB · · · An−1B

]
= 0 ∈ R1×nm

– Therefore we’ve shown there exists a nonzero v where vT Qc = 0, meaning the rows of Qc are
linearly dependent; since row rank equals column rank, rank(Qc) < n

• Example: RLC circuit with A =

 0 1
C

− 1
L

−R

L

 , B =
[

0
1
L

]

– Qc =
[
B AB

]
=

 0 1
LC1

L
− R

L2


– For all nonzero L,C this matrix has rank 2, therefore this system is always completely controllable

Lecture 14, Oct 17, 2025
Kalman Decomposition and Controllable Canonical Form

Theorem

PBH Controllability Test: The system (A, B) is completely controllable if and only if

rank(
[
sI − A B

]
) = n, ∀s ∈ C

Note if s is not an eigenvalue of A, this matrix always has rank n, so the condition only needs to be
tested for eigenvalues of A.

• Proof:
– Forward direction: rank(Qc) = n =⇒ rank(

[
sI − A B

]
) = n, ∀s ∈ C

* Take the contrapositive, ∃s ∈ C s.t. rank(
[
sI − A B

]
) < n =⇒ rank(Qc) < n

* Since the matrix is not full rank, there exists v such that vT
[
sI − A B

]
= 0

* Therefore svT = vT A and vT B = 0 ∈ R1×m
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* Multiply by B, svT B = vT AB, but vT B = 0 so vT AB = 0
• We can repeat this for all powers of A, e.g. svT AB = vT A2B = 0

* Therefore vT
[
B AB · · · An−1B

]
= vT Qc = 0, and so Qc is not full rank

• Note that since multiplying by a non-singular matrix does not change rank, we can show that the PBH
test is coordinate invariant

• Suppose rank(Qc) < n, i.e. R(Qc) ⊊ Rn; R(Qc) has the following properties:
– R(Qc) is A-invariant
– R(B) ⊆ R(Qc)

• As a consequence of the above and the representation theorem, there exists a nonsingular matrix P

such that
[
Â11 Â12

0 Â12

]
= P −1AP and

[
B̂1
0

]
= P −1B, where Â11, B̂1 have dimension dim(R(Qc))

• Let z = P −1x =
[
z1

z2

]
where z1 ∈ Rdim(R(Qc)) and z2 has the dimensions of its independent complement

– ż1 = Â11z1 + Â12z2 + B̂1u
– ż2 = Â22z2

– This is the Kalman decomposition for controllability
• The Kalman decomposition separates the system into a part that we can control and a part we cannot,

so if the eigenvalues of Â22 don’t have negative real parts, our system cannot be controlled

Definition

For a system (A, b) where rank(Qc) = k < n, let[
Â11 Â12

0 Â12

]
= P −1AP ,

[
B̂1
0

]
= P −1B

for some nonsingular P , where Â11, B̂1 ∈ Rk×k, Â12 ∈ Rk×(n−k), Â22 ∈ R(n−k)×(n−k).

The Kalman decomposition defines z = P −1x =
[
z1

z2

]T

where z1 ∈ Rk, z2 ∈ Rn−k, so the system is

decomposed as
ż1 = Â11z1 + Â12z2 + B̂1u

ż2 = Â22z2

• We can show that (Â11, B̂1) is completely controllable

– P −1Qc =
[

P −1B · · ·
P −1An−1B =

] [
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
0 0 · · · 0

]
– Note k = rank(Qc), and since P is invertible, rank(P −1Qc) = k
– Since the zeros at the bottom don’t affect rank, rank(

[
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
]
) = k

* We’re not done yet because we want the last power of Â11 to be k − 1
– By Cayley-Hamilton, we know Âk

11, Âk+1
11 , . . . , Ân−1

11 can all be written as a linear combination of
Â11, . . . , Âk−1

11 , because Â11 ∈ Rk×k

– This means rank(
[
B̂1 Â11B̂1 · · · Ân−1

11 B̂1
]
) = rank(

[
B̂1 Â11B̂1 · · · Âk−1

11 B̂1
]
) = k

* This is a simple extension of what we proved in Assignment 3
• Because Â is a block-upper-triangular matrix, its eigenvalues are the union of eigenvalues of Â11, Â22;

furthermore, the similarity transform by P does not affect eigenvalues, so the eigenvalues of A are also
this same set

– We can control the eigenvalues of the Â11 subsystem; these are known as the controllable
modes/eigenvalues

– However we can’t control the eigenvalues of Â22, so these are the uncontrollable modes/eigenvalues
– Intuitively we can see this because the control u applies to Â11 but not Â22

• Intuition: The rank of the controllability matrix is the number of states that are controllable; therefore
if the rank is n, then all states are controllable, but if the rank is less than n, some states will not be
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controllable and so it might not be possible to stabilize the system
• Practically, to compute the Kalman decomposition, we need to select a basis for R(Qc) (e.g. by picking

independent columns), and then select n− k other linearly independent vectors that together form a
basis for Rn; then we can form P and compute Â, B̂

– The choice of basis does affect the form of Â11 and Â22, however it does not change the controllable
and uncontrollable eigenvalues

Controllable Canonical Form

• Consider a single input system ẋ = Ax + bu where (A, b) is completely controllable; by choosing a
special basis, we can write this in a standard form known as the controllable canonical form

• Let XA(s) = det(sI − A) = sn + an−1s
n−1 + · · · + a1s+ a0, the characteristic polynomial of A

• Define our series of basis vectors:
– vn = b
– vn−1 = Avn + an−1vn = Ab + an−1b
– vn−2 = Avn−1 + an−2vn = A2b + an−1Ab + an−2b
– · · ·
– v1 = Av2 + a1vn = An−1b + an−1An−2b + · · · + a1b

• Note that Avi = vi−1 − ai−1vn and Av1 + a0vn = 0
– By Cayley-Hamilton, A(An−1 + an−1An−2 + · · · + a1I) + a0I = 0

=⇒ A(An−1 + an−1An−2 + · · · + a1I)b + a0b = 0
– Notice that Av1 + a0vn = A(An−1b + an−1An−2b + · · · + a1b) + a0b

= A(An−1 + an−1An−2 + · · · + a1I)b + a0b

= 0
• To show that { v1, . . . , vn } is linearly independent:

–
[
v1 · · · vn

]
=
[
b Ab · · · An−1b

]


a1 a2 a3 · · · an−1 1
a2 a3 · · · an−1 1 0

a3
...

. . .
... an−1

an−1 1
1 0


= QcT

– Due to this structure, det(T ) = (−1)n−1; since the system is controllable, we know Qc is invertible,
and therefore

[
v1 · · · vn

]
is also invertible

• Let P =
[
v1 · · · vn

]
and z = P −1x =⇒ ż = P −1AP z + P −1bu = Ãz + b̃u

– b̃ = P −1b =⇒ P b̃ = b = vn, so b̃ =


0
...
0
1


– Ã = P −1AP =⇒ AP = P Ã
– AP =

[
Av1 Av2 · · · Avn

]
=
[
−a0vn v1 − a1vn v2 − a2vn · · · vn−1 − an−1vn

]

=
[
v1 · · · vn

]


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


= P Ã

• We have just proven that a completely controllable system can be written in controllable canonical
form; it turns out that the reverse is also true, i.e. if a system can be written in controllable canonical
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form, it is always controllable

Theorem

A single-input system (A, b) is completely controllable if and only if there exists a nonsingular matrix
P , such that

ż = P −1AP z + P −1bu = Ãz + b̃u

where

Ã =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 b̃ =


0
...
0
1


This is known as the controllable canonical form.

Lecture 15, Nov 7, 2025
Stabilization and Pole Assignment

• The stabilization problem is to design a controller u = Kx so that the resulting system ẋ = Ax+Bu =
(A + BK)x is asymptotically stable

– For a nonlinear system, we want x(t) → x∗(t) where x∗(t) is an equilibrium condition, in which
case ũ = u − u∗ = K(x − x∗) and the system is ˙̃x = (A + BK)x̃

• The pole assignment problem is to find K such that the eigenvalues of A+BK are in designed locations
of C

Theorem

If the single-input system (A, b) is controllable, then the pole assignment problem is solvable, i.e. the
eigenvalues of (A + BK) can be placed arbitrarily, as long as they are in conjugate pairs.

• Proof: We can put (A, b) in controllable canonical form, ż = Âz + b̂u

– Let k̂ =
[
k̂1 · · · k̂n

]

– The closed-loop system looks like A + b̂k̂ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
k̂1 − a0 k̂2 − a1 k̂3 − a2 · · · k̂n − an−1


– We can show det(sI − (A + b̂k̂)) = sn + (an−1 − k̂n)sn−1 + · · · + (a1 − k̂2)s+ (a0 − k̂1)
– Therefore if we want some set of poles λ1, . . . ,λn, we can expand (s− λ1)(s− λ2) · · · (s− λn) =
sn + αn−1s

n−1 + · · · + α1s+ α0, then take k̂i = ai−1 − αi−1
– To get k for the original system (if it was not originally in controllable canonical form), note

kx = u = k̂z = k̂P −1x, so k = k̂P −1

Theorem

Wonham’s Pole Assignment Theorem: Any system (A, B) is completely controllable if and only if the
poles of A + BK can be freely assigned, i.e. the pole assignment problem is solvable.

• Lemma: If (A, B) is completely controllable, then ∀b ∈ R(B), ∃F ∈ Rm×n such that (A + BF , b) is
controllable
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– This essentially transforms the multi-input case into the single-input case
– We will not prove this in lecture, but we’ll use this for the proof of Wonham’s pole assignment

theorem

Summary

To place the closed-loop poles of (A, b), i.e. set the eigenvalues of A + kb to {λ1, . . . ,λn }:
1. Expand the desired characteristic polynomial:

pdes(s) = (s− λ1) · · · (s− λn) = sn + αn−1s
n−1 + · · · + α1s+ α0

2. Expand the characteristic polynomial of A:

pA(s) = sn + an−1s
n−1 + · · · + a1s+ a0

3. Let k̂ =
[
a0 − α0 · · · an−1 − αn−1

]
4. Determine P required to put the system into controllable canonical form:

P = QcT T =


a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0
1 0 · · · 0 0


5. Let k = k̂P −1 and u = kx solves the pole assignment problem.

Lecture 16, Nov 7, 2025
Pole Assignment for Multi-Input Systems

• Proof of Wonham’s pole assignment theorem:
– Assume (A, B) controllable, show that we can assign the poles to Λ = {λ1, . . . ,λn }

* Let some nonzero b = Bg, then by the helper lemma from the previous lecture, there exists
an F such that (A + BF , b) is controllable

* Since this is a single-input system and controllable, we know pole assignment is solvable,
i.e. ∃H ∈ R1×n such that (A + BF + bH) has eigenvalues Λ

* A + BF + bH = A + BF + BgH

= A + B(F + gH)
= A + BK

* Therefore if we choose K = F + gH, then the closed-loop system will have eigenvalues Λ
– To show the reverse direction, take the contrapositive, i.e. assume that (A, B) is not controllable,

show that the pole assignment problem is not solvable

* Use the Kalman decomposition
[
ż1

ż2

]
=
[
Â11 Â12

0 Â22

] [
z1

z2

]
+
[
B̂1
0

]
u

* Let K̂ =
[
K̂1 K̂2

]
so that u = K̂

[
z1

z2

]
= K̂1z1 + K̂2z2

* The closed-loop system is
[
ż1

ż2

]
=
[
Â11 + B̂1K̂1 Â12 + B̂1K̂2

0 Â22

] [
z1

z2

]
= M̂z

* Since M̂ is block-upper-triangular, its eigenvalues are the union of the eigenvalues of Â11 +
B̂1K̂1 and those of Â22

* However, we cannot affect the eigenvalues of Â22 through K̂ at all, so in general pole
assignment is not solvable
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• Wonham’s pole assignment theorem also leads to an eigenvalue assignment algorithm for multi-input
systems, by converting it into a single-input system

– Like in the proof, we convert the system to a single-input one, (A+BF , b), then use the single-input
pole assignment algorithm to find H, and finally take K = F + gH

Lecture 17, Nov 7, 2025
Stabilizability

• Last lecture we showed that we can place the poles of a closed-loop system arbitrarily if it is controllable;
what if the system is not controllable? Can we make it stable?

Definition

(A, B) is stabilizable if there exists some K such that all the eigenvalues of (A + BK) have negative
real part, i.e. with control law u = Kx, the resulting system is asymptotically stable.

• Stabilizability is a weaker condition than controllability, i.e. controllability implies stabilizability, but
not the other way around

• Example: A =
[
1 1
0 −1

]
, b =

[
1
0

]
– Notice this is already in the Kalman decomposition form, so we can tell that the system is not

controllable
– This has eigenvalues { 1, −1 }, where we cannot affect the −1 since it is in Â22; however we can

affect the other eigenvalue of 1 to bring it into the open left half plane

– Consider u =
[
k1 k2

]
x, so the closed-loop system is A + bk =

[
1 + k1 1 + k2

0 −1

]
– Therefore we can choose any k2, and choose a k1 such that k1 < −1, so that 1 + k1 (the first

eigenvalue) has negative real part
– The speed of convergence is capped by the uncontrollable eigenvalue of −1, so regardless of our

choice of k1, the system cannot possibly converge faster than e−t

Definition

For a system (A, B), in its Kalman decomposition, the eigenvalues of Â22 are the uncontrollable
eigenvalues; the other eigenvalues, i.e. the eigenvalues of Â11, are the controllable eigenvalues. Note
the eigenvalues of A (equivalently the eigenvalues of Â) is the union of the eigenvalues of Â11, Â22.

• An equivalent definition for stabilizability is to have all the uncontrollable eigenvalues have negative
real part, or equivalently all the nonnegative eigenvalues are controllable

Theorem

PBH Test for Stabilizability: λ is a controllable eigenvalue of (A, B) (equivalently, λ is not an
eigenvalue of Â22) if and only if

rank(
[
λI − A B

]
) = n

Equivalently, λ is an uncontrollable eigenvalue if and only if rank(
[
λI − A B

]
) < n. Therefore a

system is stabilizable if and only if this matrix has rank n for all non-negative eigenvalues of A.

• Proof of forward direction (λ not an eigenvalue of Â22 =⇒ rank(
[
λI − A B

]
) = n):

– rank(
[
sI − Â B̂

]
) = rank(

[
sI − A B

]
) because the two matrices are related through a matrix

multiplication by a non-singular matrix

–
[
λI − Â B̂

]
=
[
λI − Â11 −Â12 B̂1

0 λI − Â22 0

]
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– If λ is not an eigenvalue of Â22, then λI − Â22 is full-rank and therefore the bottom n− k rows
are linearly independent, so we only need to look at the top k rows (where k = rank(Qc))

– We showed in lecture that the subsystem (Â11, B̂1) is completely controllable, and therefore
rank(

[
λI − Â11 B̂1

]
) = k by the PBH controllability test

– Since adding the extra columns in −Â12 cannot possibly make the first k rows dependent, we
conclude that the first k rows are linearly independent, so the overall matrix has rank n

• In general, if we have a system that is stabilizable but not controllable, we can find its Kalman
decomposition, and design a controller to stabilize the controllable subsystem only, and then transform
back

– For the uncontrollable subsystem the gain would be arbitrary, so we usually just append zeros

Lecture 18, Nov 14, 2025
Observability, State Estimation, and Output Feedback Control

• Previously we discussed how to design controllers to stabilize a system given the full system state x;
however in practice we rarely have the full system state, so we have to estimate x using the system
output y

– Given y(t), u(t) for 0 ≤ t ≤ T , we want to estimate x(t)

• Recall that the solution is x(t) = eAtx0 +
ˆ t

0
eA(t−τ)Bu(τ)dτ

– The output is then y(t) = CeAtx0 +
ˆ t

0
CeA(t−τ)Bu(τ)dτ + Du(t)

– Notice that we know every quantity except x0, so we can solve for CeAtx0

Definition

For an LTI system, given y(t), u(t), 0 ≤ t ≤ T , the State Estimation Problem is to estimate x(t) for
0 ≤ t ≤ T . Equivalently, given CeAtx0, 0 ≤ t ≤ T , estimate x0.

• Therefore an equivalent problem is: given CeAtx0 for 0 ≤ t ≤ T , estimate x0
– Let Lo : Rn 7→ C([0, ∞],Rp) such that Lo(x0) = CeAtx0, i.e. a function mapping initial conditions

to functions
* This is a mapping that goes from Rn to continuous functions of time outputting Rp

* Note this is a linear map, but it does not have a matrix representation because the output
space is infinite dimensional

– Now given Lo(x0), under what conditions on Lo can we recover x0?
• Given vector spaces X , Y over the field R, and let f : X 7→ Y be a linear map; f(x) = y has a unique

solution if and only if N (f) contains only the zero vector, i.e. f is injective
– Therefore, obtaining x0 is possible if and only if Lo is injective (N (Lo) contains only the zero

vector)
– Note in this case, a function in N (Lo) needs to be zero for all time

Theorem

Let f : X 7→ Y be a linear map and let y ∈ R(f); then f(x) = y has a unique solution if and only if
N (f) = { 0̄ }, i.e. the null space is trivial. This is equivalent to f being injective.

• Proof:
– Forward direction: take contrapositive: N (f) ̸= { 0̄ } =⇒ f(x) = y does not have a unique

solution
* Let x ∈ X be a solution, i.e. f(x) = y
* Let u ∈ N (f) and u ̸= 0̄, so that f(u) = 0̄
* Then f(x + u) = f(x) + f(u) = y + 0̄ = y
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* Therefore both x and x + u are solutions, and so the solution is not unique
– Reverse direction: again take the contrapositive: f(x) = y does not have a unique solution

=⇒ N (f) ̸= { 0̄ }
* Let x1 ̸= x2 and f(x1) = f(x2)
* Then 0̄ = f(x1) = f(x2) = f(x1 − x2)
* Therefore x1 − x2 ∈ N (f), and x1 − x2 ̸= 0̄, so N (f) is nontrivial

• Note the relation between controllability and observability:
– In controllability:

* Lc(u(·)) =
ˆ T

0
eA(T −τ)Bu(τ) dτ

* We want Lc to be surjective, so that we can find an input to command the system to any
state we want

* We form Qc from (A, B) and use the rank of this matrix to test for controllability
– In observability:

* Lo(x0) = CeAtx0
* We want Lo to be injective, so that for any output we want to be able to find a unique initial

condition (and therefore system state)
* Likewise, we will formulate a Qo from (A, C) and check its rank

Definition

The system (A, B, C, D) is observable if Lo : Rn 7→ C([0, ∞],Rp) is injective, or equivalently N (Lo) =
{ 0̄ }, where Lo(x0) = CeAtx0.

• Example: consider ẋ =
[
1 0
1 1

]
x and y =

[
1 0

]
x

– We have ẋ1(t) = x1(t) =⇒ x1(t) = etx1(0)
– y(t) = x1(t) = etx1(0)
– Intuitively we know this system is not observable since we don’t have any information about x2
– Consider the case of x2(0) = 1 and x2(0) = 2; in both cases we have the exact same y(t) as long as
x1(0) is the same, so we can’t recover x2(0) and therefore the system is not observable

– In this case,
[
0
1

]
and

[
0
2

]
are both in N (Lo), since both of them result in a zero CeAtx0 (which is

equivalent to y(t) in this case)
• Practically speaking, if we discover that our system is not observable or detectable, it means that we

either need to add more sensors to measure more outputs, or reduce the model complexity, because
this indicates that our model is overly complex and contains unuseful states that we cannot determine
anyway

Theorem

Let the observability matrix be defined as

Qo =


C

CA
...

CAn−1


The observability matrix has the same null space as Lo, i.e. N (Lo) = N (Qo), therefore observability
is equivalent to N (Qo) = { 0 }, i.e. rank(Qo) = n.

• Proof:
– N (Qo) ⊆ N (Lo)

* Let x ∈ N (Qo), then Cx = CAx = · · · = CAn−1x = 0
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* We want to show that Lo(x) = CeAtx = 0

* CeAtx = C

( ∞∑
k=0

Ak

k!

)
x

=
∞∑

k=0

1
k!CAkx

* We already know that CAkx = 0 for k = 0, . . . ,n− 1 because x ∈ N (Qo)
* By Cayley-Hamilton, any higher power of A can be expressed as a linear combination of Ai

for i = 0, . . . ,n− 1, so we can show that CAkx = 0 holds for all k by an inductive proof
* Therefore CeAtx and x ∈ N (Lo)

– N (Lo) ⊆ N (Qo)
* Let x ∈ (Lo), then CeAtx = 0 for all t
* Set t = 0 to get Cx = 0
* Take the derivative, d

dt (CeAtx) = CAeAtx = 0, and evaluate at t = 0 again to get CAx = 0

* Therefore we can show that CAix for i = 0, . . . ,n− 1, and therefore


C

CA
...

CAn−1

x = 0

Kalman Decomposition for Observability

• Similar to the controllability case, we can show that N (Qo) is A-invariant, and N (Qo) ⊆ N (C)
– Let x ∈ N (Qo), then Cx = CAx = · · · = CAn−1x = 0
– Consider QoAx, this has rows CAx, . . . , CAnx; we already know that CAkx = 0 up to k = n−1
– For CAnx, use Cayley-Hamilton to expand An as a sum of lower powers, then we can show

CAnx = 0
– Therefore x ∈ N (Qo) =⇒ Ax ∈ N (Qo) and so N (Qo) is A-invariant
– Also, since Cx = 0 from the first row of Qox = 0, x ∈ N (C), so N (Qo) ⊆ N (C)

• By the representation theorem, we can find a coordinate transformation P by taking the first k =
n− rank(Qo) vectors as a basis for N (Qo), then the rest such that P is invertible, and let z = P −1x

• Then we get ż =
[
ż1

ż2

]
=
[
Â11 Â12

0 Â22

]
z +

[
B̂1
B̂2

]
, y =

[
0 Ĉ2

]
z + Du

– The subsystem ż2 = Â22z2 + B̂2u, y = Ĉ2z2 + Du is observable, while the subsystem pertaining
to z1 is unobservable

Kalman Decomposition for Controllability and Observability

• Now we will combine what we know about observability and controllability
• Lemma: The intersection of two A-invariant subspaces is also A-invariant
• Consider a system that is neither controllable nor observable

– Let Vcō = R(Qc) ∩ N (Qo) be the controllable but not observable subspace; let its dimension be
ncō

* This is A-invariant because it’s the intersection of two A-invariant subspaces
– Let Vco = R(Qc) \ Vcō be the controllable and observable subspace; let its dimension be nco

* Vcō ⊕ Vco = R(Qc)
– Let Vc̄ō = N (Qo) \ Vcō be the not controllable and not observable subspace; let its dimension be
nc̄ō

* Vcō ⊕ Vc̄ō = N (Qo)
– Let Vc̄o = Rn \ (Vcō ⊕ Vco ⊕ Vc̄ō) be the not controllable but observable subspace; let its dimension

be nc̄o

* Note that the direct sum of all subspaces is Rn

• Let the matrix P contain the basis for Vcō, Vco, Vc̄ō, Vc̄o in this exact order
– The first ncō + nco columns form a basis for R(Qc)
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• Let z =


z1

z2

z3

z4

 = P −1x, where each of the 4 components corresponds to the 4 subspaces in the order

above

• Applying the representation theorem, ż =


Âcō ∗ ∗ ∗

0 Âco 0 ∗
0 0 Âc̄ō ∗
0 0 0 Âc̄o




z1

z2

z3

z4

+


B̂cō

B̂co

0
0

u

y =
[
0 Ĉco 0 Ĉc̄o

]
z + Du

– The entries marked with ∗ are nonzero in general, which don’t affect our analysis
– We first apply the Kalman Decomposition for controllability, which gives us Â11 ∈
R(ncō+nco)×(ncō+nco) and so on

– We can verify the zero entries by checking which subspace is contained in the others
• If we start in the controllable subspace, i.e. x(0) ∈ R(Qc), then z3(t) = z4(t) = 0 for all t

– x(0) is a linear combination of the basis vectors of Vcō and Vco, since those two subspaces together
make up R(Qc); it doesn’t have any component in the basis vectors of the other two subspaces,
since those do not intersect R(Qc)

– From x(0) = P z(0) we see that z3(0) = z4(0) = 0 as a result, and this gives ż3 = ż4 = 0 for all
time

– Then
[
ż1

ż2

]
=
[
Âcō ∗

0 Âco

] [
z1

z2

]
+
[
B̂cō

B̂co

]
u

y =
[
0 Ĉco

] [z1

z2

]
+ Du

* This subsystem is controllable (since we get it from the Kalman decomposition for controlla-
bility) but not observable

* From this we can extract the controllable and observable subsystem ż2 = Âcoz2 + B̂cou

y = Ĉcoz2 + Du

• The observable subsystem is
[
ż2

ż4

]
=
[
Âco ∗

0 Âc̄o

] [
z2

z4

]
+ B̂cou

y =
[
Ĉco Ĉc̄o

] [z2

z4

]
+ Du

Theorem

The system (A, B, C, D) has the same transfer function as the controllable and observable subsystem,
(Âco, B̂co, Ĉco, D̂), which is known as the minimal realization of the transfer function, as it is the
smallest (lowest number of states) system that results in this transfer function.

• Let G : C 7→ Rp×m be a transfer function matrix, and let (A, B, C, D) be any state space realization
of the same system and (Âco, B̂co, Ĉco, D̂) be the controllable and observable subsystem

– If (A, B, C, D) is uncontrollable or unobservable, then the minimal realization has k < n states,
and so it will have k poles

– The transfer function G will also have k poles, and therefore there are n−k pole-zero cancellations

Note

Key insight: If a transfer function has one or more pole-zero cancellations, then its state space
realization is either uncontrollable or unobservable.

• Example: Consider G(s) = s+ 1
(s+ 1)(s+ 3) , which has one pole-zero cancellation
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– Using the uncancelled transfer function, one choice of states is x =
[

y
ẏ − u

]
, we get the realization

A =
[

0 1
−3 −4

]
, B =

[
1

−3

]
, C =

[
1 0

]
* Qc =

[
1 −3

−3 9

]
, which has rank 1, so the system is not controllable

– Using G(s) = 1
s+ 3, choose x = y, which results in A = −3,B = 1,C = 1

* This is now the minimal realization of the system
* Qc = B = 1 so clearly this system is controllable
* Qo = C = 1 so the system is observable as well

State Observers

• Given a control system (A, B, C, D), we want to design an observer, which estimates (“observes”) the
state x(t), given the known y(t) and u(t)

• The observer predicts a state estimate x̂ as ˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂ + Du

– The observer is an LTI system itself which tries to simulate the system dynamics and corrects its
estimate based on observations

– L is a matrix to be designed, which corrects the estimated state based on the difference of the
predicted output versus the actual measured output

• Define the estimation error e = x − x̂, which we can show to have dynamics ė = (A − LC)e
– Therefore we just need to choose L such that this system is asymptotically stable, i.e. make the

eigenvalues of A − LC have negative real part

Definition

The state estimation problem is to find a matrix L for a system (A, B, C, D) such that the eigenvalues
of A − LC all have real part less than zero, so the estimation error is asymptotically stable.

A system is called detectable if the state estimation problem is solvable.

Theorem

A system (C, A) is detectable if and only if (AT , CT ) is stabilizable.

• This is because the eigenvalues of A − LC is the same as (A − LC)T = AT − CT LT , so if we can find
K to stabilize (AT , CT ), then taking L = KT solves the state estimation problem

Theorem

Duality Theorem: Controllability and detectability are duals, i.e.
1. (C, A) is observable if and only if (AT , CT ) is controllable.
2. (C, A) is detectable if and only if (AT , CT ) is stabilizable.

(AT , CT ) is known as the dual system of (C, A).

• We can prove this by noticing the similarity between Qo and QT
c ; if we take (AT , CT ) and form its

controllability matrix, we get QT
o , which has the same rank as Qo, so the system is observable if and

only if its dual system is controllable
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Theorem

PBH Test for Detectability: (C, A) is detectable if and only if for all eigenvalues λ of A,

Re(λ) ≥ 0 =⇒ rank
([
λI − A

C

])
= n

• This is analogous to applying the PBH test for stabilizability to the dual system
• Proof:

– (C, A) is detectable if and only if (AT , CT ) is stabilizable, which is true if and only if for all
eigenvalues of AT , Re(λ) ≥ 0 =⇒ rank(

[
λI − AT CT

]
) = n (PBH stabilizability test)

– Since transpose does not change rank or eigenvalues, this is the same as rank
([
λI − A

C

])
= n

• Suppose (C, A) is not observable, then by applying the Kalman decomposition we get

ż =
[
Â11 Â12

0 Â22

]
z +

[
B̂1
B̂2

]
u and y =

[
0 Ĉ1

]
z + Du where (Ĉ1, Â22) is the observable

subsystem

• Let L̂ =
[
L̂1
L̂2

]
then Â − L̂Ĉ =

[
Â11 Â12 − L̂1Ĉ1

0 Â22 − L̂2Ĉ1

]
– This shows that we can affect the eigenvalues of the Â22 subsystem but not the Â11 subsystem
– The eigenvalues of Â11 are the unobservable eigenvalues, and the eigenvalues of Â22 are the

observable eigenvalues; together these make up all eigenvalues of A
– Just like the controllability case, by the PBH test, an eigenvalue is unobservable if and only if

rank
([
λI − A
C

])
< n, and observable if and only if rank

([
λI − A
C

])
= n

Output Feedback Stabilization

• Putting it all together, how do we stabilize a system if we only know the output y(t) and input u(t)
but not the state?

• Given a stabilizable and detectable system, our goal is to design K and L such that the eigenvalues
of (A + BK) and (A − LC) have real part less than zero, then we can implement the control law
u = Kx̂ and observer ˙̂x = Ax̂ + Bu + L(y − ŷ)

ŷ = Cx̂ + Du
• We will show that this indeed results in an asymptotically stable system

– Let e = x − x̂
– ẋ = Ax + Bu

= Ax + BKx̂ + BKx − BKx

= Ax + BKx − BK(x − x̂)
= (A + BK)x − BKe

– Also, ė = (A − LC)e (shown previously)

– Therefore
[
ẋ
ė

]
=
[
A + BK −BK

0 A − LC

] [
x
e

]
, so if we have the eigenvalues of (A + BK) and

(A − LC) both negative, then the overall system is stable

Theorem

Separation Principle: To stabilize a system (A, B, C, D) through output feedback, we can design
separately an asymptotically stable state feedback controller to place the eigenvalues of A + BK, and
an asymptotically stable observer to place the eigenvalues of A−LC, then using the observer estimate
for state feedback. The resulting control law u = Kx̂ makes the system asymptotically stable.
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Lecture 19, Nov 26, 2025
Linear Quadratic Optimal Control

• Consider a spring-mass system with an input force, u− kx1 = mẍ1 and let x2 = ẋ1, so the system is

described by ẋ =
[

0 1
−k/m 0

]
x +

[
0

1/m

]
u

– The energy of the system is E = 1
2kx

2
1 + 1

2mx
2
2

– We can try to minimize the energy over time, J =
ˆ ∞

0

1
2kx

2
1(τ) + 1

2mx
2
2(τ) + 1

2u
2(τ) dτ

– Note we need to include the control input in the integral to make the problem well-defined,
otherwise this will just cause infinite control inputs

• More generally, we can have any cost function quadratic in the system state and control input

Definition

For a stabilizable system ẋ = Ax + Bu, let U be the set of admissible control laws of the form
u(t) = ϕ(t), t ≥ 0 such that ϕ : [0, ∞) 7→ Rm is continuous and asymptotically stabilizes the
closed-loop system.
The Linear Quadratic Optimal Control problem is to find some ϕ ∈ U which minimizes a quadratic
cost function,

J(x, ϕ) =
ˆ ∞

0
x(t)T Qx(t) + ϕ(t)T Rϕ(t) dt

where Q is symmetric positive semidefinite, and R is symmetric positive definite.

• Intuitively, the reason we choose this cost function is that it usually relates to the “energy” of the
system, and penalizes the state being far from the origin and the control effort being large

• Let L(x, u) = xT Qx + uT Ru be the instantaneous cost for the current values of x, u

• Define the optimal value function V (x) = inf
ϕ∈U

J(x, ϕ) = inf
ϕ∈U

ˆ ∞

0
x(t)T Qx(t) + u(t)T Ru(t) dt such

that x(t) = Ax(t) + Bu(t), x(0) = x, i.e. V (x) is the lowest possible cost if we start with an initial
state of x

– Note the infimum inf denotes the greatest lower bound (we can’t simply use min since we don’t
know if one exists yet), e.g. inf

n∈N

1
n

= 0, but 0 is not in the set
• We can show that if an optimal control ϕ∗ ∈ U exists, i.e. V (x) = min

ϕ∗∈U
J(x, ϕ) = J(x, ϕ∗), then (V , ϕ∗)

satisfies the Hamilton-Jacobi-Bellman (HJB) equation, min
u∈Rm

∂V

∂x
(x) · (Ax + Bu) + L(x, u) = 0

– Intuitively, since the first term is essentially ∂V

∂t
, this means that the cost does not change

instantaneously
– Let τ > 0 and suppose ϕ∗ exists, then V (x) =

ˆ τ

0
L(x(t), ϕ∗(t)) dt+

ˆ ∞

τ

L(x(t), ϕ∗(t)) dt

– The second term must minimize the cost on [τ , ∞), i.e.
ˆ ∞

τ

L(x(t), ϕ∗(t)) dt = min
u∈U

ˆ ∞

τ

L(x(t), u(t)) dt,

since if this is not the case, then if we decrease τ , then V (x) will decrease, violating our assumption
that it is optimal

* This means that the control law must be optimal at each point in time, so we can consider
only a very small initial τ (i.e. the initial step) and ignore the rest

* This is known as Bellman’s principle of optimality: an optimal policy has the property that,
whatever the initial state and decisions so far are, the remaining decisions must constitute
and optimal policy with regard to the state resulting from the decisions so far

– Therefore V (x) = min
u∈U

ˆ τ

0
L(x(t), u(t)) dt + V (x(τ)), where V (x(τ)) is the cost from time τ
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onwards and known as the cost-to-go
– For small τ ,

ˆ τ

0
L(x(t), u(t)) dt = τL(x, u) +O(τ) where O has the property that lim

s→0

O(s)
s

= 0

– Using a first-order Taylor series at τ = 0, V (x(τ)) = V (x) + d
dtV (x(t))

∣∣∣∣
t=0

τ +O(τ)

* Note d
dtV (x(t)) =

[
∂V

∂x1
(x) · · · ∂V

∂xn
(x)
]

· dx

dt = ∂V

∂x
(x) · (Ax + Bu)

– Substituting both expansions into the expression earlier and some manipulation later we get the
HJB equation

• The HJB equation is quadratic in u, and since R is positive definite there is a unique minimum, i.e. the

problem is convex, with the unique solution given by u∗ = −1
2R−1BT

(
∂V

∂x
(x)
)T

• Propose a trial solution V (x) = xT P x, where P T = P is positive semidefinite, so ∂V

∂x
(x) = 2xT P

and u∗ = −R−1BT P x
– Substitute into the HJB equation to get xT (−P BR−1BT P + P A + AT P + Q)x = 0
– Since this holds for any arbitrary x ∈ Rn, this means that −P BR−1BT P + P A + AT P + Q = 0
– −P BR−1BT P + P A + AT P + Q = 0 is known as the algebraic Ricatti equation

• Now we need to show that our candidate optimal control law ϕ(t) = −R−1BT P x(t) does lead to the
lowest cost, and stabilizes the system so it is admissible

• We will use the result that if Q is symmetric positive semidefinite, then there exists a matrix square
root Q

1
2 such that (Q 1

2 )T Q
1
2 = Q

– Since Q is PSD, Q = MT ΛM where M is an orthogonal matrix, so Q
1
2 = Λ 1

2 M where Λ 1
2 has

square roots on the diagonal
• Also, all principal sub-matrices of Q, i.e. any sub-matrix on the diagonal of Q, must also be positive

semidefinite (this can be shown by noting xT Qx ≥ 0 and we can choose x to isolate any sub-matrix)

Theorem

If (A, B) is stabilizable and (Q 1
2 , A) is detectable, then the algebraic Ricatti equation

−P BR−1BT P + P A + AT P + Q = 0

has a unique symmetric positive semidefinite solution P , and the control policy

ϕ∗(t) = −R−1BT P x(t)

is the optimal controller for the linear quadratic optimal control problem, and the optimal cost is
given by V (x) = J(x, ϕ∗) = xT P x.

• Proof: Let ϕ ∈ U and x(0) = x, we substitute the algebraic Ricatti equation for Q into the cost, then
complete the square and use ẋ(t) = Ax(t) + Bϕ(t)

– J(x, ϕ) =
ˆ ∞

0
x(t)T Qx(t) + ϕ(t)T Rϕ(t) dt

=
ˆ ∞

0
x(t)T (P BR−1BT P − P A − AT P )x(t) + ϕ(t)T Rϕ(t) dt

=
ˆ ∞

0
(ϕ(t) + R−1BT P x(t))T R(ϕ(t) + R−1BT P x(t)) −

(
ẋ(t)T P x(t) + x(t)P ẋ(t)

)
dt

=
ˆ ∞

0
(ϕ(t) + R−1BT P x(t))T R(ϕ(t) + R−1BT P x(t)) dt−

ˆ ∞

0

d
dt (x(t)T P x(t)) dt

= xT P x +
ˆ ∞

0
(ϕ(t) + R−1BT P x(t))T R(ϕ(t) + R−1BT P x(t)) dt

– By the positive semidefiniteness of R, the term inside the integral is always nonnegative, and it is
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minimized when ϕ(t) + R−1BT P x(t), i.e. ϕ∗(t) = −R−1BT P x(t), which gives us the optimal
cost xT P x

Summary

For a system ẋ = Ax + Bu, linear quadratic optimal control seeks to optimize a cost functional

J(x, ϕ) =
ˆ ∞

0
x(t)T Qx(t) + ϕ(t)T Rϕ(t)dt

where u = ϕ, x(0) = x, assuming that (A, B) is stabilizable and (Q 1
2 , A) is detectable. Then the

optimal control law is given by
ϕ∗(t) = −R−1BT P x(t)

where P is the unique positive semidefinite solution to the algebraic Ricatti equation,

−P BR−1BT P + P A + AT P + Q = 0
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