

Tutorial 10, Dec 1, 2025

- Consider a mass on a pendulum with equation of motion: $ml^2\ddot{\theta} + mgl \sin \theta = \tau$
 - Design a PD controller with gravity compensation to stabilize the system to $(\theta, \dot{\theta}) \rightarrow (\pi, 0)$, i.e. pendulum pointing upwards and not moving
 - * We can see that the gravity term is $G(\theta) = mgl \sin \theta$ and the inertia term is $D(q) = ml^2$
 - * From lecture, the controller is $\tau = mgl \sin \theta + k_p(\pi - \theta) + k_d(0 - \dot{\theta})$ for $k_p > 0, k_d > 0$
 - Show that the equilibrium is asymptotically stable
 - * Closed loop system is $ml^2\ddot{\theta} = k_p(\pi - \theta) - k_d\dot{\theta}$
 - * Use the Lyapunov function $V(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + \frac{1}{2}k_p(\pi - \theta)^2$
 - Note we need to show that this is positive definite
 - * $\dot{V} = ml^2\dot{\theta}\ddot{\theta} - k_p(\pi - \theta)\dot{\theta} = -k_d\dot{\theta}^2$ (substitute $ml^2\ddot{\theta}$)
 - * This is only positive semidefinite, so we need to use LaSalle
 - * $\dot{V} \equiv 0, \forall t \implies \dot{\theta} \equiv 0 \implies \ddot{\theta} \equiv 0 \implies k_p(\pi - \theta) = 0 \implies \theta = \pi$
- Consider a point mass on a plane, $q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$ with mass M ; the equations of motion are $M\ddot{q} = u \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$;
 - we want to track the signal $q^r(t) = (t + \sin t, t)$
 - Design a feedback linearization controller
 - * Here $M(q) = M, C(q, \dot{q}) = 0, B(q) = 0, G(q) = 0$
 - * The system is already linear
 - * Choose $u = M \left(\ddot{q}^r + \begin{bmatrix} k_p^1 & 0 \\ 0 & k_p^2 \end{bmatrix} \tilde{q} + \begin{bmatrix} k_d^1 & 0 \\ 0 & k_d^2 \end{bmatrix} \dot{\tilde{q}} \right) = M \begin{bmatrix} -\sin t + k_p^1(t + \sin t - q_1) + k_d^1(1 + \cos t - \dot{q}_1) \\ k_p^2(t - q_2) + k_d^2(1 - \dot{q}_2) \end{bmatrix}$
 - Design a passivity based controller
 - * $u = M \left(\begin{bmatrix} -\sin t \\ 0 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \dot{q}_1^r - \dot{q}_1 \\ \dot{q}_2^r - \dot{q}_2 \end{bmatrix} \right) + \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} \left(\begin{bmatrix} \dot{q}_1^r - \dot{q}_1 \\ \dot{q}_2^r - \dot{q}_2 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} q_1^r - q_1 \\ q_2^r - q_2 \end{bmatrix} \right)$
 - Compare the two controllers
 - * If we choose $k_p^2 = \frac{k_2}{M}\lambda_2, k_d^2 = \lambda_2 + \frac{k_2}{M}, k_p^1 = \begin{bmatrix} k \\ M \end{bmatrix} \lambda_1, k_d^1 = \frac{k_1}{M} + \lambda_1$, then we can see that the two controllers are actually the same
 - * This is because we have a linear system