Lecture 5, Sep 12, 2025

Euler Angle Parameterization of Rotations

- We will parametrize rotations using zyz Euler angles, i.e. $R_1^0 = R_{z,\phi}R_{y,\theta}R_{z,\phi}$
 - Expanded: $R_1^0 = \begin{bmatrix} \cos \phi \cos \varphi \sin \phi \sin \varphi & -\cos \phi \cos \theta \sin \varphi \sin \phi \cos \varphi & \cos \phi \sin \theta \\ \sin \phi \cos \theta \cos \varphi + \cos \phi \sin \varphi & -\sin \phi \cos \varphi & \sin \phi \sin \theta \\ -\sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \end{bmatrix}$
 - This is the representation we choose to use since it directly coincides with the joint angles of a spherical wrist, e.g. on the KUKA robot
- Given R, we can do the inverse and find (ϕ, θ, φ)
 - Assuming $\sin \theta \neq 0$:
 - * If $\sin \theta > 0$:
 - $\theta = \cos^{-1}(r_{33})$
 - $\varphi = \operatorname{atan2}(r_{32}, -r_{31})$
 - $\phi = \operatorname{atan2}(r_{23}, r_{13})$
 - * If $\sin \theta < 0$:
 - $\theta = -\cos^{-1}(r_{33})$
 - $\varphi = \text{atan2}(-r_{32}, r_{31})$
 - $\phi = \operatorname{atan2}(-r_{23}, -r_{13})$
 - Explanation:
 - * We can recover θ from r_{33} , but since \cos^{-1} is not unique, this gives rise to 2 different solutions
 - * The other angles can be recovered by atan2, but note multiplying the two arguments of atan2 by a negative factor changes the result
 - * If $\sin \theta > 0$ the factor is essentially cancelled out, but for $\sin \theta < 0$ we need to explicitly negate both arguments to undo the sign flip
 - If $\sin \theta = 0$, we have a *singularity* (e.g. when the robot folds in on itself); in this case there are an infinite number of solutions
 - * These are undesirable because it is very hard to move the robot in this pose

Rigid Motions in 3D

Definition

A rigid motion in frame 0 is a function

$$T(p^0) = Rp^0 + d^0$$

where $R \in SO(3)$ is a rotational transformation, and d^0 is a coordinate vector in frame 0; i.e. a rotation followed by a translation.

- Note p is a point, so now we add the ability to translate
- Note if we reverse the order (translate first and then rotate), the translation will be different
- Consider two frames, O_0, x_0, y_0, z_0 and O_1, x_1, y_1, z_1 , and consider a point p; we have $O_0 + d = O_1$, $O_0 + w = p$, and $O_1 + v = p$
 - Geometrically (without considering coordinates), we know w = d + v
 - If we think about coordinates, we have, $w^0 = p^0$, $v^1 = p^1$ and $d^0 = O_1^0$
 - Then $w^0 = d^0 + v^0 \implies w^0 = d^0 + R_1^0 v^1$
 - Substituting, we get the result $p^0 = O_1^0 + R_1^0 p^1$
 - Notice that this is similar to when we worked with vectors, except now we need to know O_1^0

Figure 1: Diagram of the setup used to derive the rigid transformation rule.