Lecture 29, Nov 19, 2025

Lyapunov Stability

- Consider a general nonlinear system $\dot{x} = f(x)$ where $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ is continuously differentiable
- An equilibrium state $\bar{x} \in \mathbb{R}^n$ is a state where $f(\bar{x}) = 0$, i.e. $x(t) = \bar{x}, \forall t \geq 0$

Definition

An equilibrium is stable if $\forall \varepsilon > 0, \exists \delta > 0$ such that $||x(0)|| < \delta \implies ||x(t)|| < \varepsilon, \forall t \ge 0$.

- In other words, given any positive radius ε around the equilibrium, we can find another radius δ , where if the initial state starts within δ of the equilibrium, then it will remain within a distance of ε of the equilibrium forever
 - This is the formal definition, which is very hard to work with, so in practice we use equivalent statements of the definition



Figure 1: Illustration of the definition of Lyapunov stability.

Definition

An equilibrium is asymptotically stable if it is stable, and

$$\exists \delta_0 > 0 \text{ s.t. } ||x(0)|| < \delta_0 \implies \lim_{t \to \infty} x(t) = 0$$

- In other words, there exists a positive radius δ_0 such that if we start within this distance of the equilibrium, we always converge to the equilibrium
- A continuously differentiable function $U: \mathbb{R}^n \to \mathbb{R}$ is positive definite at x=0 if U(0)=0 and U(x)>0for all $x \neq 0$; negative definite if -U(x) is positive definite at 0 (i.e. $\forall x \neq 0, U(x) < 0$ and U(0) = 0)

Theorem

Lyapunov's Theorem: For a system where f(0) = 0, if we can find a continuously differentiable Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}$ which is positive definite at x = 0, then:

1

- 1. If $\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0, \forall x \in \mathbb{R}$, then x = 0 is stable. 2. If $\dot{V}(x) = \frac{\partial V}{\partial x} f(x)$ is negative definite, then x = 0 is asymptotically stable.
- The Lyapunov function can be thought of as a measure of energy

- Consider a solution x(t), then if $\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) = \frac{\partial V}{\partial x}\dot{x} = \frac{\partial V}{\partial x}f(x) \leq 0$, then this "energy" either stays the same or decreases to zero
- the same or decreases to zero

 If V(x) is positive definite, then $V(x) = 0 \implies x = 0$, so as V(x) converges to 0, x must also converge to its equilibrium
- We essentially converted all the high-dimensional dynamics of the system in x to the dynamics of a single scalar measure V(x)