Lecture 11, Sep 26, 2025

Inverse Kinematics by Kinematic Decoupling

- Recall that we decomposed the problem so that $O_c(q_1,q_2,q_3) = O_d^0 R_d^0 \begin{bmatrix} 0 \\ 0 \\ d_6 \end{bmatrix}$
- For inverse position kinematics, we usually do this by analyzing the geometry
- For inverse orientation kinematics, notice that the 3 joints in a spherical wrist form zyz Euler angles, so we can directly compute the joint angles (ϕ, θ, ψ) using the formula introduced previously

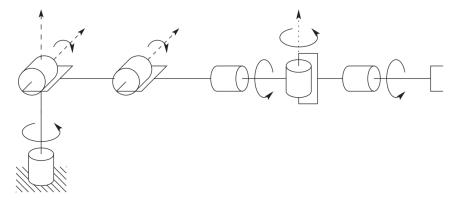


Figure 1: Elbow manipulator with spherical wrist.

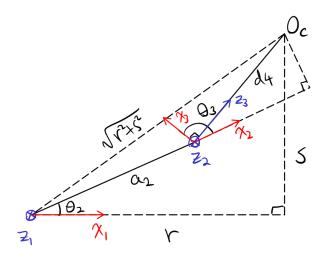


Figure 2: Diagram of link 2 and link 3 for the geometric determination of θ_2, θ_3 .

- Example: Consider the RRR manipulator with spherical wrist as in the figure above
 - The center of the spherical wrist is $O_c^0 = \begin{bmatrix} x_c & y_c & z_c \end{bmatrix}^T$
 - Let $r=\sqrt{x_c^2+y_c^2}$ be the horizontal distance from the spherical wrist center to O_0
 - Let $s = |z_c d_1|$ be the vertical distance between the spherical wrist center and the top of link 1 (position of joint 2)
 - By geometry, $\theta_1 = \operatorname{atan2}(y_c, x_c)$
 - Using the cosine law: $r^2 + s^2 = a_2^2 + d_4^2 2a_2d_4\cos\left(\frac{3\pi}{2} \theta_3\right) = a_2^2 + d_4^2 + 2a_2d_4\sin\theta_3$

*
$$\theta_3 = \sin^{-1} \left(\frac{r^2 + s^2 - a_2^2 - d_4^2}{2a_2d_4} \right)$$

- * Another solution is $\theta_3 = \pi \sin^{-1}\left(\frac{r^2 + s^2 a_2^2 d_4^2}{2a_2d_4}\right)$ There are 2 configurations possible, the "elbow-up" and "elbow-down" configurations

 * Note we can also write $\theta_3 = \tan 2(D, \pm \sqrt{1 D^2})$ where $D = \frac{r^2 + s^2 a_2^2 d_4^2}{2a_2d_4}$
- This gives a solution in the range $[-\pi, +\pi]$ while the former is in $[0, 2\pi]$ Using θ_3 , now $\theta_2 = \operatorname{atan2}(s, r) \operatorname{atan2}\left(d_4\sin\left(\theta_3 \frac{\pi}{2}\right), a_2 + d_4\cos\left(\theta_3 \frac{\pi}{2}\right)\right)$
- For inverse orientation kinematics, if we carry out the computation for H_6^3 we get something very similar to the zyz Euler rotation matrix, but some of the signs may be different
 - * The differences in sign are due to the assignment of the x axes, since they can be flipped and still follow the DH rules
 - * Watch out for this in labs