Lecture 10, Sep 24, 2025

Inverse Kinematics

- Given a desired position $O_d^0 \in \mathbb{R}^3$ and orientation $R_d^0 \in \mathbb{R}^{3 \times 3}$ for the end-effector in the world frame, we want to find q_1, \ldots, q_n such that $H_n^0(q_1, \ldots, q_n)$ (the end-effector pose as a function of the joint variables) gives the pose that we want
 - The end-effector pose has 6 degrees of freedom, so whether we can get a solution depends on the number of joint variables n
 - If n < 6, then there are no general solutions (many poses will be impossible to reach)
 - If n > 6, then there are an infinite number of solutions (kinematically redundant manipulator)
 - If n = 6, then there are a finite number of solutions
 - * This is why most practical robot manipulators (e.g. KUKA) has 6 joints

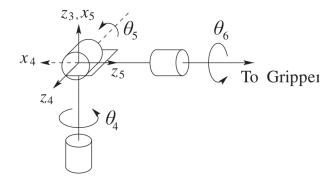


Figure 1: A spherical wrist arrangement. For kinematic decoupling, the last 3 joints must be in this configuration; however the first 3 joints/links are generic.

- We can do this numerically or analytically, but for analytic solutions we need to make some more assumptions about the robot:
 - Assume the robot has 6 joints exactly
 - Assume that the last 3 joints are in a spherical wrist arrangement
- Kinematic decoupling is an analytical approach to inverse kinematics under these assumptions, which allows us to split the overall inverse kinematics problem into 2 parts
 - Let O_c be the centre of the wrist; then between O_c and O_d , there is a constant offset of d_6 along axis z_6 by construction of the spherical wrist; furthermore, O_c is not affected by q_4, q_5, q_6
 - * Note O_c is the same as O_4 and O_5
 - * Therefore we can write $O_d^0 = O_c^0 + R_6^0 \begin{bmatrix} 0 \\ 0 \\ d_0 \end{bmatrix} \implies O_c^0 = O_d^0 R_d^0 \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix}$
 - * Now the problem becomes solving for q_1,q_2,q_3 so $O_c^0(q_1,q_2,q_3)=O_d^0-R_d^0\begin{bmatrix}0\\0\\d\end{bmatrix}$
 - We've decomposed the problem into a part with only 3 unknowns, since everything on the right hand side is known
 - Inverse position kinematics problem: given O_d^0 , R_d^0 , solve for q_1, q_2, q_3 such that we have the correct O_a^0
 - Inverse orientation kinematics problem: given R_d^0 and solutions for q_1, q_2, q_3 , find q_4, q_5, q_6 to get the desired orientation
 - * For this part we decompose as $R_d^0 = R_3^0(q_1, q_2, q_3) R_6^3(q_4, q_5, q_6)$; since q_1, q_2, q_3 are known, we can compute the first matrix and invert it
 - * $R_6^3(q_4, q_5, q_6) = (R_3^0)^T R_d^0$