
Tutorial 4
Autograd

• Automatic differentiation is a method to get exact gradients (derivatives) efficiently, by storing the
computational graph as we perform a forward computation, which we can reuse when going backwards

– This is different from symbolic differentiation, which manipulates symbolic expressions to get an
exact algebraic expression for the derivative

* This is expensive and impractical for very complex computations like a large neural network
– This is also different from numeric differentiation, which approximates derivatives by finite

differences
* This is can also be expensive and unstable

– Takes code that computes a function and returns code that computes the derivative
• Any function can be broken down into a computational graph of basic operations which we know how

to differentiate, then we can apply the chain rule
• autograd is a Python package for automatic differentiation

– It can auto-differentiate Python and numpy code
– import autograd.numpy as np gives a thin wrapper around regular numpy functions

* This replaces normal numpy functions with ones that also track the computational graph
– The autograd.grad takes a function, and gives a function that computes its gradient
– Can handle most common Python structures
– Can calculate higher order derivatives as well, by simply calling grad() multiple times

• autograd performs backpropagation to calculate the gradients
• For functions with multiple parameters (note the return value should be a single scalar):

– grad(f, argnum) computes the gradient with respect to the argument at position argnum
* By default the gradient is taken with respect only to the first variable
* The resulting function is still a function of all the original variables

– grad_named(f, argname) computes the gradient with respect to the argument with name argname
– multigrad(f, argnums) computes gradients with respect to multiple arguments simultaneously

(argnums is a list)
– multigrad_dict(f) computes gradients with respect to all arguments simultaneously, returning

a dict mapping argument names to gradient values
• Custom gradients can be registered, if we want to manually specify the gradient of a function, for

purposes such as speed, numerical stability, etc

1


	Tutorial 4
	Autograd


