Tutorial 4

Autograd

o Automatic differentiation is a method to get exact gradients (derivatives) efficiently, by storing the
computational graph as we perform a forward computation, which we can reuse when going backwards
— This is different from symbolic differentiation, which manipulates symbolic expressions to get an
exact algebraic expression for the derivative
* This is expensive and impractical for very complex computations like a large neural network
— This is also different from numeric differentiation, which approximates derivatives by finite
differences
* This is can also be expensive and unstable
— Takes code that computes a function and returns code that computes the derivative
e Any function can be broken down into a computational graph of basic operations which we know how
to differentiate, then we can apply the chain rule
e autograd is a Python package for automatic differentiation
— It can auto-differentiate Python and numpy code
— import autograd.numpy as np gives a thin wrapper around regular numpy functions
* This replaces normal numpy functions with ones that also track the computational graph
— The autograd.grad takes a function, and gives a function that computes its gradient
— Can handle most common Python structures
— Can calculate higher order derivatives as well, by simply calling grad () multiple times
o autograd performs backpropagation to calculate the gradients
o For functions with multiple parameters (note the return value should be a single scalar):
— grad(f, argnum) computes the gradient with respect to the argument at position argnum
* By default the gradient is taken with respect only to the first variable
* The resulting function is still a function of all the original variables
— grad_named(f, argname) computes the gradient with respect to the argument with name argname
— multigrad(f, argnums) computes gradients with respect to multiple arguments simultaneously
(argnums is a list)
— multigrad_dict(f) computes gradients with respect to all arguments simultaneously, returning
a dict mapping argument names to gradient values
e Custom gradients can be registered, if we want to manually specify the gradient of a function, for
purposes such as speed, numerical stability, etc



	Tutorial 4
	Autograd


