

Tutorial 2, Jan 30, 2024

Linear Algebra Refresher

- A vector inner product takes $2n - 1$ flops (n multiplications, $n - 1$ additions), which we often shorten to just $2n$
- A matrix-vector product takes $2nm$ flops for an $m \times n$ matrix
- The *condition number* of a function measures how much its output changes for a small change in the input, i.e. how susceptible the output is to noise
 - For the linear equation $\mathbf{A}\mathbf{x} = \mathbf{b}$, it gives a bound of how inaccurate the solution \mathbf{x} will be after approximation; smaller condition numbers are better for stability
 - This is a property of the matrix (not the algorithm or the floating-point representation)
 - It is defined as $\kappa(\mathbf{A}) = \left| \frac{\lambda_{\max}}{\lambda_{\min}} \right|$
 - Note $\kappa(\mathbf{A}^T \mathbf{A}) = (\kappa(\mathbf{A}))^2$, so squaring a matrix is very bad for stability
- Once we have solved $\mathbf{A}\mathbf{x} = \mathbf{b}$, we can use it to also solve an updated problem where we perturb \mathbf{A} by a small, low-rank \mathbf{UCV}
 - A low-rank perturbation means that the change in certain dimensions is much less than that in other dimensions
 - Assume we know \mathbf{A}^{-1} or that it is easy to compute
 - Then $(\mathbf{A} + \mathbf{UCV})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$ (*matrix inversion lemma*)
 - All we need to do is to calculate \mathbf{C}^{-1} , which is very efficient for a low-rank \mathbf{C}
 - A similar formula exists for the determinant