
Lecture 9, Feb 16, 2024
Unconstrained Optimization

• Given f(θ) where θ ∈ Rn and f : Rn 7→ R, we want to find θ∗ = argmin
θ

f(θ)

• Let θ∗ be a local minimum of f , then f(θ∗ + ϵp) ≥ f(θ∗) for any arbitrary p and small ϵ

– f(θ∗ + ϵp) = f(θ∗) + ϵpT g(θ∗) + 1
2ϵ2pT H(θ∗)p +O(ϵ3) where g(θ) is the gradient and H(θ) is

the Hessian
– The middle two terms must be greater than or equal to zero due to the local minimum condition
– This means that g(θ∗) = 0, and H(θ∗) is symmetric positive definite, since p is arbitrary

• KKT conditions:
– The first order necessary optimality condition states that the gradient must be zero at the minimum
– The second order necessary optimality condition states that the Hessian must be positive semi-

definite
– If both the gradient is zero and the Hessian is positive definite, then we have sufficient conditions

for a minimum

Gradient-Based Unconstrained Numerical Optimization

• Gradient-based algorithms are based on the following template:
– Start with k = 0 and an initial guess θ0
– In each iteration:

* Test for convergence; if we have converged, stop and take θk as the solution; if not, continue
* Compute the search direction pk

* Compute the step length αk > 0 s.t. f(θk + αkpk) < f(θk)
* Take θk=1 ← θk + αkpk and k ← k + 1

• To obtain a valid search direction, we need pT
k gk < 0, i.e. the step and the gradient have to point in

opposite directions
– Take pk = −Bgk for some symmetric positive definite B
– Possible choices for B:

* Steepest descent: B = 1
• The search direction is directly opposite to the gradient

* Newton’s method: B = H−1
k

* Quasi-Newton methods: B ≈H−1
k

• For computational reasons, these methods take an approximation of the inverse Hessian
• Computing the appropriate αk is a tradeoff between reducing function evaluations (i.e. getting to the

goal with fewer steps) and computational cost at each step
– One technique is to take a number of αks and stop at the first one that meets some condition
– Armijo sufficient decrease condition: f(θk + αkpk) ≤ f(θk) + µ1αkgT

k pk

* The constant µ1 is typically chosen in the range of 10−4

– Backtracking line search:
* Choose starting step length (between 0 and 1)
* Check if Armijo condition is satisfied, and if so use the current step length
* If not, α← ρα (typically ρ ∈ [0.1, 0.5]) and check again

• Steepest descent algorithm:
– Select initial guess θ0, gradient tolerance ϵg, absolute tolerance ϵa, relative tolerance ϵr

– If ∥g(θk)∥2 ≤ ϵg then stop

– Set pk = − g(θk)
∥g(θk)∥2

– Find αk such that f(θk + αpk) satisfies the sufficient decrease conditions
– Update as θk+1 ← θk + αkpk

– Evaluate f(θk+1); if |f(θk+1)− f(θk)| ≤ ϵa + ϵr|f(θk)| for two successive iterations, stop
* In this case our algorithm has gotten stuck

• For steepest descent, for all k, we can show that pk+1 is orthogonal to pk

1

– ∂f(θk+1)
∂α

= 0 =⇒ ∇⃗T f(θk+1)pk = 0 =⇒ g(θk−1)T g(θk) = 0
– This means we’re always zig-zagging at each iteration
– This is inefficient (high number of iterations needed), but it is guaranteed to converge

– Convergence rate is linear: lim
k→∞

|f(θk−1)− f(θ∗)|
|f(θk)− f(θ∗)| = K

• Conjugate gradient method (nonlinear, first order, i.e. only uses the gradient):

– p0 = − g(θ0)
∥g(θ0)∥2

for the first step

– For all other steps pk = −gk + βkpk−1

* Fletcher-Reeves: βk = gT
k gk

gT
k−1gk−1

* Polak-Ribieve: βk = gT
k (gk − gk−1)
gT

k−1gk−1
– Since we’re using knowledge from previous gradients, this does not zig zag as much as steepest

descent
• Newton’s method (second order, i.e. also uses the Hessian):

– Quadratic convergence: lim
k→∞

|f(θk−1)− f(θ∗)|
|f(θk)− f(θ∗)|2 = K > 0

– Use pk = H−1
k gk

* Note that this step direction is only valid if Hk is positive definite
* We can check the dot product of pk with gk at each step, and if this is invalid (i.e. greater

than 0) we simply go in the opposite direction
• Newton’s method requires computation of the inverse Hessian, which can be very inefficient; for

computational reasons, we use quasi-Newton methods which approximate the inverse Hessian
– These don’t make use of the Hessian but can still get better than linear convergence
– Iteratively update B−1

k+1 = B−1
k + ∆B̂k

– ∆B̂k depends on the specific method

2

	Lecture 9, Feb 16, 2024
	Unconstrained Optimization
	Gradient-Based Unconstrained Numerical Optimization

