Lecture 9, Feb 16, 2024

Unconstrained Optimization

- Given $f(\boldsymbol{\theta})$ where $\boldsymbol{\theta} \in \mathbb{R}^n$ and $f \colon \mathbb{R}^n \mapsto \mathbb{R}$, we want to find $\boldsymbol{\theta}^* = \operatorname{argmin} f(\boldsymbol{\theta})$
- Let θ^* be a local minimum of f, then $f(\theta^* + \epsilon p) \ge f(\theta^*)$ for any arbitrary p and small ϵ
 - $-f(\boldsymbol{\theta}^* + \epsilon \boldsymbol{p}) = f(\boldsymbol{\theta}^*) + \epsilon \boldsymbol{p}^T \boldsymbol{g}(\boldsymbol{\theta}^*) + \frac{1}{2} \epsilon^2 \boldsymbol{p}^T \boldsymbol{H}(\boldsymbol{\theta}^*) \boldsymbol{p} + \mathcal{O}(\epsilon^3) \text{ where } \boldsymbol{g}(\boldsymbol{\theta}) \text{ is the gradient and } \boldsymbol{H}(\boldsymbol{\theta}) \text{ is the Hessian}$
 - The middle two terms must be greater than or equal to zero due to the local minimum condition
 - This means that $g(\theta^*) = 0$, and $H(\theta^*)$ is symmetric positive definite, since p is arbitrary
- KKT conditions:
 - The first order necessary optimality condition states that the gradient must be zero at the minimum
 - The second order necessary optimality condition states that the Hessian must be positive semidefinite
 - If both the gradient is zero and the Hessian is positive definite, then we have sufficient conditions for a minimum

Gradient-Based Unconstrained Numerical Optimization

- Gradient-based algorithms are based on the following template:
 - Start with k = 0 and an initial guess $\boldsymbol{\theta}_0$
 - In each iteration:
 - * Test for convergence; if we have converged, stop and take θ_k as the solution; if not, continue
 - * Compute the search direction p_k
 - * Compute the step length $\alpha_k > 0$ s.t. $f(\boldsymbol{\theta}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{\theta}_k)$
 - * Take $\theta_{k=1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \boldsymbol{p}_k$ and $k \leftarrow k+1$
- To obtain a valid search direction, we need $\boldsymbol{p}_k^T \boldsymbol{g}_k < 0$, i.e. the step and the gradient have to point in opposite directions
 - Take $p_k = -Bg_k$ for some symmetric positive definite B
 - Possible choices for B:
 - * Steepest descent: B = 1
 - The search direction is directly opposite to the gradient
 - * Newton's method: $\boldsymbol{B} = \boldsymbol{H}_k^{-1}$
 - * Quasi-Newton methods: $\vec{B} \approx H_k^{-1}$
- For computational reasons, these methods take an approximation of the inverse Hessian
 Computing the appropriate α_k is a tradeoff between reducing function evaluations (i.e. getting to the goal with fewer steps) and computational cost at each step
 - One technique is to take a number of α_k s and stop at the first one that meets some condition
 - Armijo sufficient decrease condition: $f(\boldsymbol{\theta}_k + \alpha_k \boldsymbol{p}_k) \leq f(\boldsymbol{\theta}_k) + \mu_1 \alpha_k \boldsymbol{g}_k^T \boldsymbol{p}_k$
 - * The constant μ_1 is typically chosen in the range of 10^{-4}
 - Backtracking line search:
 - * Choose starting step length (between 0 and 1)
 - $\,^*\,$ Check if Armijo condition is satisfied, and if so use the current step length
 - * If not, $\alpha \leftarrow \rho \alpha$ (typically $\rho \in [0.1, 0.5]$) and check again
- Steepest descent algorithm:
 - Select initial guess θ_0 , gradient tolerance ϵ_g , absolute tolerance ϵ_a , relative tolerance ϵ_r
 - If $\|\boldsymbol{g}(\boldsymbol{\theta}_k)\|_2 \leq \epsilon_g$ then stop
 - Set $\boldsymbol{p}_k = -\frac{\boldsymbol{g}(\boldsymbol{\theta}_k)}{\|\boldsymbol{g}(\boldsymbol{\theta}_k)\|_2}$
 - Find α_k such that $f(\boldsymbol{\theta}_k + \alpha \boldsymbol{p}_k)$ satisfies the sufficient decrease conditions
 - Update as $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha_k \boldsymbol{p}_k$
 - Evaluate $f(\boldsymbol{\theta}_{k+1})$; if $|f(\boldsymbol{\theta}_{k+1}) f(\boldsymbol{\theta}_k)| \le \epsilon_a + \epsilon_r |f(\boldsymbol{\theta}_k)|$ for two successive iterations, stop * In this case our algorithm has gotten stuck
- For steepest descent, for all k, we can show that p_{k+1} is orthogonal to p_k

- $-\frac{\partial f(\boldsymbol{\theta}_{k+1})}{\partial \alpha} = 0 \implies \vec{\nabla}^T f(\boldsymbol{\theta}_{k+1}) \boldsymbol{p}_k = 0 \implies \boldsymbol{g}(\boldsymbol{\theta}_{k-1})^T \boldsymbol{g}(\boldsymbol{\theta}_k) = 0$ This means we're always zig-zagging at each iteration
- This is inefficient (high number of iterations needed), but it is guaranteed to converge
- Convergence rate is linear: $\lim_{k \to \infty} \frac{|f(\boldsymbol{\theta}_{k-1}) f(\boldsymbol{\theta}^*)|}{|f(\boldsymbol{\theta}_k) f(\boldsymbol{\theta}^*)|} = K$ Conjugate gradient method (nonlinear, first order, i.e. only uses the gradient):
- - $\boldsymbol{p}_0 = rac{\boldsymbol{g}(\boldsymbol{ heta}_0)}{\|\boldsymbol{g}(\boldsymbol{ heta}_0)\|_2} ext{ for the first step}$

- For all other steps
$$\boldsymbol{p}_k = -\boldsymbol{g}_k + \beta_k \boldsymbol{p}_{k-1}$$

* Fletcher-Reeves:
$$\beta_k = \frac{g_k g_k}{g_{k-1}^T g_{k-1}}$$

* Polak-Ribieve: $\beta_k = \frac{g_k^T (g_k - g_{k-1})}{g_k^T g_k - g_{k-1}}$

- $rac{T}{k}(oldsymbol{g}_k^T-oldsymbol{g}_{k-1}) \ oldsymbol{g}_{k-1}^Toldsymbol{g}_{k-1}$ olak-Kibieve: p_k
- Since we're using knowledge from previous gradients, this does not zig zag as much as steepest descent
- Newton's method (second order, i.e. also uses the Hessian):

- Quadratic convergence:
$$\lim_{k \to \infty} \frac{|f(\boldsymbol{\theta}_{k-1}) - f(\boldsymbol{\theta}^*)|}{|f(\boldsymbol{\theta}_k) - f(\boldsymbol{\theta}^*)|^2} = K > 0$$

- Use $\boldsymbol{p}_k = \boldsymbol{H}_k^{-1} \boldsymbol{g}_k$
 - * Note that this step direction is only valid if H_k is positive definite
 - * We can check the dot product of p_k with g_k at each step, and if this is invalid (i.e. greater than 0) we simply go in the opposite direction
- Newton's method requires computation of the inverse Hessian, which can be very inefficient; for computational reasons, we use quasi-Newton methods which approximate the inverse Hessian
 - These don't make use of the Hessian but can still get better than linear convergence
 - Iteratively update $B_{k+1}^{-1} = B_k^{-1} + \Delta \hat{B}_k$
 - $\Delta \hat{B}_k$ depends on the specific method