Lecture 9, Feb 16, 2024

Unconstrained Optimization
o Given f(0) where 8 € R" and f: R" — R, we want to find 8% = argmin f(0)
0
o Let 6" be a local minimum of f, then f(0* + ep) > f(6*) for any arbitrary p and small €
1
~ f(0" +ep) = f(0") +epT g(6%) + ieszH(H*)p + O(€®) where g(8) is the gradient and H () is
the Hessian
— The middle two terms must be greater than or equal to zero due to the local minimum condition
— This means that g(60*) = 0, and H(6") is symmetric positive definite, since p is arbitrary
e KKT conditions:
— The first order necessary optimality condition states that the gradient must be zero at the minimum
— The second order necessary optimality condition states that the Hessian must be positive semi-
definite

— If both the gradient is zero and the Hessian is positive definite, then we have sufficient conditions
for a minimum

Gradient-Based Unconstrained Numerical Optimization

o Gradient-based algorithms are based on the following template:
— Start with £ = 0 and an initial guess 6y
— In each iteration:
Test for convergence; if we have converged, stop and take 8 as the solution; if not, continue
Compute the search direction py
Compute the step length ay > 0 s.t. f(0r + arpr) < f(Ox)
Take Or—1 + O + axpr and k < k+ 1
o To obtain a valid search direction, we need p;‘ggk < 0, i.e. the step and the gradient have to point in
opposite directions
— Take pp = —Bgy, for some symmetric positive definite B
— Possible choices for B:
* Steepest descent: B =1
e The search direction is directly opposite to the gradient
* Newton’s method: B = H, '
* Quasi-Newton methods: B ~ H, 1
o For computational reasons, these methods take an approximation of the inverse Hessian
o Computing the appropriate «y is a tradeoff between reducing function evaluations (i.e. getting to the
goal with fewer steps) and computational cost at each step
— One technique is to take a number of ays and stop at the first one that meets some condition
— Armijo sufficient decrease condition: f(8y + arpr) < f(0r) + w1049} Pk
* The constant p is typically chosen in the range of 10™*
— Backtracking line search:
* Choose starting step length (between 0 and 1)
* Check if Armijo condition is satisfied, and if so use the current step length
* If not, a + pa (typically p € [0.1,0.5]) and check again
e Steepest descent algorithm:
— Select initial guess 8y, gradient tolerance €4, absolute tolerance ¢,, relative tolerance e,
— If ||g(0k)||l2 < €4 then stop
9(6k)
19(0x)[2
— Find a4, such that f(0y + apy) satisfies the sufficient decrease conditions
— Update as 041 < 0 + oDk
— Evaluate f(Or+1); if |f(Or+1) — f(O)| < €a + €| f(Oy)| for two successive iterations, stop
* In this case our algorithm has gotten stuck
e For steepest descent, for all k, we can show that py41 is orthogonal to py

O R

Set pp, = —

_ 0f(Ok+1) =0 = VI f(0r1)pr =0 = g(0,_1)"g(6;) =0

e
— This means we’re always zig-zagging at each iteration

— This is inefficient (high number of iterations needed), but it is guaranteed to converge

. o [f(Ok—1) — f(67)]
— Convergence rate is linear: lim =K
g oo |f(0r) — F(67))

Conjugate gradient method (nonlinear, first order, i.e. only uses the gradient):

- po = fﬂ for the first step
19(60)]]2
— For all other steps pr = —gi + BxPr_1
T
* Fletcher-Reeves: By = Tgki
9i_19k-1
"y gt (gr — gk-1)
* Polak-Ribieve: B = kT—
9i_19k-1
— Since we're using knowledge from previous gradients, this does not zig zag as much as steepest

descent
Newton’s method (second order, i.e. also uses the Hessian):

— Quadratic convergence: kli_{rolO ||ff((06k;c_)1)—f(f0(:9)2 =K>0

- Usepi = H; g,
* Note that this step direction is only valid if Hj, is positive definite
* We can check the dot product of p; with gi at each step, and if this is invalid (i.e. greater
than 0) we simply go in the opposite direction
Newton’s method requires computation of the inverse Hessian, which can be very inefficient; for
computational reasons, we use quasi-Newton methods which approximate the inverse Hessian
— These don’t make use of the Hessian but can still get better than linear convergence
— Iteratively update Bk:_+11 = Bk_1 + AB;,
— ABy, depends on the specific method

	Lecture 9, Feb 16, 2024
	Unconstrained Optimization
	Gradient-Based Unconstrained Numerical Optimization

