
Lecture 8, Feb 13, 2024
Probability Density Estimation

• Previously we’ve considered learning problems using a loss function perspective; now we would like to
consider a statistical perspective

• We begin by looking at density estimation problems
• Given a dataset D = { x(i) }

N

i=1, we would like to determine the distribution generating this data
– Assume θ is a hypothesis class that parametrizes the density function
– Pθ = { p(x | θ) | θ ∈ Γ }

Maximum Likelihood Estimation

• In ML we aim to find the parameter value θ̂ for which the observed data has the highest probabil-
ity/density of occurring

• θ̂ML = argmax
θ∈Γ

p(x(1), x(2), . . . , x(N)|θ)

– The term p(x(1), x(2), . . . , x(N)|θ) is known as the likelihood function
• We often assume that the data is independently and identically distributed (IID), which allows us to

decompose the likelihood into a product

• Assuming IID, p(x(1), . . . , x(N)|θ) =
N∏

i=1
p(x(i)|θ)

• Maximizing the likelihood is the same as maximizing the log of the likelihood function; this is referred
to as log-likelihood

– log p(x(1), . . . , x(N)|θ) =
N∑

i=1
log
(

p(x(i)|θ)
)

– Practically, using log-likelihood prevents instability due to underflow (multiplying many very small
numbers)

• To solve for the ML estimator we simply differentiate and set the derivative to zero

–
N∑

i=1

∇θp(x(i)|θ)
p(x(i)|θ)

= 0

– In special cases we may obtain analytical solutions using linear algebra, but in general we may
have to use nonlinear optimization methods

• MLE can also be used to perform regression
– Consider observations as y(x) = f̂(x, w) + ϵ where ϵ ∈ N (0, σ2)
– f̂(x, w) is the underlying function; we add some noise ϵ to get the measurement

– p(y|x, w, σ2) = N (y|f̂(x, w), σ2) = 1√
2πσ

exp
(

− (y − f̂(x, w))2

2σ2

)
– The goal is to estimate the parameters w

– p(y|X, w, σ2) =
N∏

i=1
N (y(i)|f̂(x(i), w), σ2)

=
(

1
2πσ2

)N
2

exp
(

− 1
2σ2

N∑
i=1

(y(i) − f̂(x(i), w))2

)
* y is a column vector of all the observations while X has each of the x(i) vectors as its rows

– The negative log-likelihood is 1
2σ2

N∑
i=1

(y(i) − f̂(x(i), w))2 + N log σ + N

2 log 2π

* Notice that the first term is just the l2 loss function
* The other two terms are constant in w, so we see that MLE is equivalent to using a l2 loss

function when the data is IID Gaussian
– This also lets us estimate the variance of the noise by differentiating the log-likelihood wrt σ2 and
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solve for zero

* − 1
2σ3

N∑
i=1

(y(i) − f̂(x(i), w))2 + N

σ
= 0

* σ2 = 1
N

N∑
i=1

(y(i) − f̂(x(i), w))2

• For regression, we get a constant variance, so the error bars are constant size throughout the data
– This is not reasonable since we expect the error bars to be smaller where we have more data points
– Near the middle where we have more data, we should get smaller error while near the edges we

should expect more
• Example exercise: assume IID Laplacian noise, formulate an optimization problem and solve for ŵML

– The Laplace distribution is given by Lap(ϵ|µ, b) = 1
2b

e− |ϵ−µ|
b

* Mean, variance of 2b2

– Get the joint likelihood: p(y|X, w, 2b2) =
N∏

i=1
Lap(y(i)|f̂(x, w), 2b2)

=
(

1
2b

)N

exp
(

−
N∑

i=1

|y(i) − f̂(x(i), w)|
b

)

– Negative log likelihood: − log(p(y|X, w, 2b2)) = N log 2b − 1
b

N∑
i=1

|y(i) − f̂(x(i), w)|

– Optimization problem: ŵML = argmin
w

N log 2b − 1
b

N∑
i=1

|y(i) − f̂(x(i), w)|

= argmin
w

N∑
i=1

|y(i) − f̂(x(i), w)|

* Notice that this is akin to minimizing an l1 loss function
* This is no longer solvable analytically

• Example: Given measurements x(1) = 1, x(2) = 2, x(3) = 3, x(4) = 3, x(5) = 4 distributed according to
an exponential distribution ρe−ρx, find the MLE of ρ

– p(x(1), . . . , x(5)|ρ) =
5∏

i=1
ρe−ρx(i)

= ρ5e−13ρ

– NLL: − log(p(x(1), . . . , x(5)|ρ)) = −5 log ρ + 13ρ

– Differentiate: −5
ρ

+ 13 = 0 =⇒ ρ̂ML = 5
13

Maximum a Posteriori (MAP) Estimation

• In MAP estimation, we aim to find the parameter value that is most likely to occur given the data and
a prior distribution of the parameter value

• p(θ|D) = p(D|θ)p(θ)
p(D)

– The evidence/marginal likelihood in the denominator is often hard to compute
– However for MAP we don’t need to compute it since it does not depend on θ

• θ̂MAP = argmax
θ

p(D|θ)p(θ)

– When the prior is uniform, this is equivalent to MLE
• Consider regression with a Gaussian prior and noise:

– p(w|α) = N (w|0, α1) =
(

1√
2πα

)M

exp
(

−wT w

2α

)
– p(y|x, w, σ2) =

N∏
i=1

N (y(i)|f̂(x(i), w), σ2)
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– The posterior is proportional to the product of the two

– ŵMAP = argmin
w

1
2σ2

N∑
i=1

(f̂(x(i), w) − y(i))2 + 1
2α

wT w

= argmin
w

1
2

N∑
i=1

(f̂(x(i), w) − y(i))2 + σ2

2α
wT w

* Notice that the first term is the l2 loss function while the second is l2 regularization
* MAP estimation is equivalent to using an l2 loss function with l2 regularization, assuming a

zero-mean Gaussian prior and IID Gaussian noise distribution
* In the statistical perspective we are saying that we believe the weights are small prior to seeing

the data; in the loss function perspective we are forcing the weights to be small

• Now consider a Laplace prior: p(w|α) =
M∏

i=1
Lap(wi|0, α) =

(
1

2α

)M

exp
(

− 1
α

M∑
i=1

|wi|

)

– Likelihood: p(y|x, w, σ2) =
N∏

i=1
N (y(i)|f̂(x(i), w), σ2) =

(
1

2πσ2

)N
2

– Negative log likelihood of posterior: − log(p(y|X, w, σ2)) − log(p(w|α))

* 1
2σ2

N∑
i=1

(y(i) − f̂(x(i), w))2 − 1
α

M∑
i=1

|wi|

– We see again that this is equivalent to using l2 loss with l1 regularization with λ = 2σ2

α

Frequentist vs. Bayesian Estimation

• In the frequentist approach, we assume that there exists a true fixed parameter value θ∗

– We can get error bars by considering the distribution of possible datasets given this parameter
value

– However the error bars are not very good because they are independent of the inputs
– Both MLE and MAP are frequentist methods since they give point estimates

• In the Bayesian approach, we use a single observation dataset to estimate the entire posterior distribution
– This gives us both the mean as an estimate and a measure of uncertainty
– Enables leveraging of priors
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