Lecture 8, Feb 13, 2024

Probability Density Estimation

e Previously we’ve considered learning problems using a loss function perspective; now we would like to
consider a statistical perspective
o We begin by looking at density estimation problems
NN
e Given a dataset D = {m(z) }._q, we would like to determine the distribution generating this data
— Assume 0 is a hypothesis class that parametrizes the density function
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Maximum Likelihood Estimation

e In ML we aim to find the parameter value 0 for which the observed data has the highest probabil-
1ty /density of occurring

o Oy = argmaxp(w( ) x® m(N)|0)
fer
— The term p(sc(l), @ .. 7:E(N)|0) is known as the likelihood function

o We often assume that the data is independently and identically distributed (IID), which allows us to
decompose the likelihood into a product
N

o Assuming IID, p(z™, ..., 2™ |9) = Hp(a;(i)w)

e Maximizing the likelihood is the same as maximizing the log of the likelihood function; this is referred
to as log-likelihood

~ logp(z™, ..., 2™)|g) = Zlog( ("]9) )

— Practically, using 10g—hkehhood prevents instability due to underflow (multiplying many very small
numbers)
e To solve for the ML estimator we simply differentiate and set the derivative to zero
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- In spec1al cases we may obtain analytical solutions using linear algebra, but in general we may
have to use nonlinear optimization methods
e MLE can also be used to perform regression
— Consider observations as y(x) = f(z,w) + € where e € N'(0,02)
- f (z,w) is the underlying function; we add some noise € to get the measurement
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The goal is to estimate the parameters w
N

- p(yl X, w,0%) = [N f ("), w),0?)
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* gy is a column vector of all the observatlons while X has each of the (¥ vectors as its rows
N
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— The negative log-likelihood is 252 Zl(y(z) — f(,w))? + Nlogo + 5 log 27
i=
* Notice that the first term is just the I loss function
* The other two terms are constant in w, so we see that MLE is equivalent to using a Iy loss
function when the data is IID Gaussian
— This also lets us estimate the variance of the noise by differentiating the log-likelihood wrt o and




solve for zero
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e For regression, wezgét a constant variance, so the error bars are constant size throughout the data
— This is not reasonable since we expect the error bars to be smaller where we have more data points
— Near the middle where we have more data, we should get smaller error while near the edges we
should expect more
o Example exercise: assume IID Laplacian noise, formulate an optimization problem and solve for Wy,
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— The Laplace distribution is given by Lap(e|u, b) = 2¢
* Mean, variance of 2b>
N
— Get the joint likelihood: p(y|X,w,2b?) = 1_[Lap(y(i)|f(a:,w)7 2b%)
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— Negative log likelihood: — log(p(y|X,w, 2b%)) = N log 2b — 3 g 1y @ — f(z, w)|
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— Optimization problem: ;7 = argmin N log 2b — 3 Z|y(z) - f(:c(’), w)|
w i=1
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* Notice that this is akin to minimizing an /; loss function
* This is no longer solvable analytically
o Example: Given measurements =M = 1,x(2) = 2,x(3) = 3,x(4) = 3,30(5) = 4 distributed according to
an exponential distribution pe™#%, find the MLE of p
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— NLL: — log(p(x(l), e ,x(5)|p)) = —5logp+ 13p
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— Differentiate: —— +13=0 = pymp = —
P 13

Maximum a Posteriori (MAP) Estimation

e In MAP estimation, we aim to find the parameter value that is most likely to occur given the data and
a prior distEith)io? c))f the parameter value
p(D|0)p(6
- plop) = "=
— The evidence/marginal likelihood in the denominator is often hard to compute
_ — However for MAP we don’t need to compute it since it does not depend on 0
e Opap = argglaxp(D\O)p(O)

— When the prior is uniform, this is equivalent to MLE
« Consider regression with a Gaussian prior and noise:
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— The posterior is proportional to the product of the two
N
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* Notice that the ﬁrst term is the Iy loss function while the second is lo regularization

* MAP estimation is equivalent to using an lo loss function with Iy regularization, assuming a

zero-mean Gaussian prior and IID Gaussian noise distribution

* In the statistical perspective we are saying that we believe the weights are small prior to seeing

the data; in the loss function perspective we are forcing the weights to be small
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o Now consider a Laplace prior: p(w|a) = HLap(wﬁO,a) = () exp <_a Z|w1|>
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— Likelihood: p(y|z,w,o?) = HN(y(Z)|f(ac(l),w),02) = ( )
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- Negative log likelihood of posterior: — log( (y| X, w, %)) — log(p(w|a))
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— We see again that this is equivalent to using ls loss with [y regularization with A = —
o

Frequentist vs. Bayesian Estimation

o In the frequentist approach, we assume that there exists a true fixed parameter value 6*

— We can get error bars by considering the distribution of possible datasets given this parameter

value
— However the error bars are not very good because they are independent of the inputs
— Both MLE and MAP are frequentist methods since they give point estimates

o In the Bayesian approach, we use a single observation dataset to estimate the entire posterior distribution

— This gives us both the mean as an estimate and a measure of uncertainty
— Enables leveraging of priors
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