Lecture 7, Feb 6, 2024

Dual Representations of GLMs

N
« Consider the loss function: L(w) = ||y — ¢pw|3 = Z('chl)(sc(i)) —y)2 AwTw

i=1

N
— Setting g—i =0 = 22 (wTd)(w(i)) - y(i)a> (V) + 20w =0
i=1

N N
1 . , . .
 Then w — — 1+ (wT¢(w(1)) _ yu)a) p@) =3 ap(a?)) = 3"a
1)\ i=1 i=1
* oy = —X(wT(b(w(i)) — y(i)) are the dual variables while w are the primal variables

+ Substitute w = ®7 a into the loss function: L(a) = o’ 2®T@d"a—2a” @®Ty+y y+ o’ P a =
o' KKa—-20"Ky+yTy+ ' Ka
- K = ®®T ¢ RV*V is the Gram matriz, which is real and symmetric
— The (4, j)th entry of K is given by K;; = dxNTp(xD) = k(2 2))
— k: X x X — Ris the kernel
« Using the loss in terms of K, we take V4.J = 0 leads to o = (K + A1)y
— With this solution for a we have f(z,w) = qb(ac)Tw =¢(x)T®T (K +21)" 1y
~ Note the ith entry of ®¢(x) is ¢p(xD) () = k(z,)
- Let k(z) = { k(. 2),.... k(z™,z)} eRY
N
« The model can then be rewritten as f(x, w) = k(z)T (K + A1) "'y = Z aik(x, @)
i=1
— This is known as the dual representation
— We’ve defined our model entirely in terms of the kernel; we don’t actually need to evaluate the
basis functions themselves, and only the inner products between the bases are needed
— The choice of a kernel implicitly characterizes the feature space mapping ¢
e Using the kernel is often much more efficient than using the basis functions explicitly
— e.g. for the polynomial features, k(x,z) = qb(a:)Tgb(z) =1+ x121 + T2z + T1T22122 + -+ +
D
T1...TpDZ1...2D = H(l—&—mizi)
i=1
— The original features would need O(QD) computation time, but using the kernel this is reduced to
O(D) for the simple product
e The kernel can also be interpreted as a similarity metric, since it takes two points from X and returns a
real scalar

T -
The kernel trick: Any linear method that can be written in terms of dot products " 20 can be

kernelized by replacing :I:(i)Tsc(j) k(ac(i), zU)), which results in a nonlinear generalization of the
linear method.

o This allows us to do kernel PCA, kernel SVM, etc
— e.g. kernel k-NN
* Distance computation in feature space is |¢(z) — ¢(2)]|2 = d(x) d(x) + d(2) () —
26(x)7 b(2)
* Replace this by k(x,x) + k(z, z) — 2k(x, 2) to kernelize it
e Even though we derived this result for the squared loss specifically, the representer theorem states that
this kernel form of the model will always be able to minimize the loss

Kernel Selection

e The kernel function must define a dot product for some Hilbert space F, which means it must be
symmetric and positive semi-definite
— Symmetry means k(z, z) = k(z,)
— PSD means JI u(x)k(x, z)u(z) dedz > 0 for all square integrable functions u
— By extension this means:
* K is positive semi-definite
* Cauchy-Schwartz inequality: k(z,z) < \/k(z,z)k(z, 2)
* Definiteness: k(z,z) >0
— This all makes sense intuitively if the kernel is interpreted as a distance metric
o Example kernels:
— Linear: k(zx,2) =2’ 2
— Polynomial: k(x,z) = (14 x2)"

1
— Isotropic Gaussian: k(x, z) = exp <—0||w - z||§>

* # > 0 is a hyperparameter
— Anisotropic Gaussian: k(z, z) = exp(—(z — 2)70 ! (z — 2))
* @ e RP*P is symmetric positive definite and a hyperparameter
e We can go from kernels back to features, e.g. for the polynomial kernel:
—k(x,z) = (14 x121 + 2220+ -+ xpzp)"
~For D=2and n =2, k(x,2) = 1 + 2227 + 2322 + 22121 + 22020 + 201200020
~ Therefore ¢(x) = [1 2 z2 V21 V29 V2129
e The feature vector can even be infinite dimensional, e.g. for the Gaussian kernel:
~ For D=1,0 =1, k(z, 2) = exp(—(z — 2)?)
= exp(—2?) exp(—2?) exp(2x2)
© ok .k k
= exp(—z?) exp(—2?) Z 2 chf!z

k=0

1 2
— Therefore ¢(z) = [exp(—xZ) \/?xl exp(—x?) \/zav2 exp(—x?)
o To select the kernel, we can use prior kriowledge of the targ.et function
— If the target function is known to be smooth (i.e. differentiable k times) then we can use a kernel
that also has the same degree of smoothness
— If the function is finitely smooth, use the Gaussian or another C°° kernel
— If the function is periodic we can use a periodic kernel
— Plenty of literate exists in this area
o Radial basis functions (RBFs) are kernels that are translation invariant, i.e. their value only depends on
the distance between the features
_ k(m(i),x(j)) - k‘(HCE(i) _ 90(j)||) = k(r)
— Examples of RBF kernels:

2
* Gaussian: k(r) = e~ @

2
* Multiquadratic: k(r) =1/1+ %

1

Vi+s

* Matern kernels: a family including
o C% exp (—C>
: : 7
o o ()
T+ exp (5

o (135) oo)

* Inverse multiquadratic: k(r) =

— All the above kernels have 6 has a hyperparameter; this is the shape parameter, where larger
values spread out the function and gives a higher value for larger values of r

Sparsity

N
o The regression model is f(x, o) = Zaik(:c,ac(i)) where o = (K + A1) 'y
i=1
e This can be interpreted as a GLM constructed using the N basis functions k(, w(l)), oo k(, w(N))
— We have one basis function per data point, so this is a dense regression model
e Note that when A = 0, since we have N basis functions, we will match our NV training points exactly
— This can be useful if we know that there is no noise in the training data
— When A = 0, K is guaranteed to be non-singular if and only if the training data points are unique
e When A > 0, K + A1 is symmetric positive definite, so we can compute the Cholesky factorization
without worrying about singularities
— Since we never formed normal equations, we never squared the condition number, so this is stable
+ Computing this will take @(N?) memory and O(N?) time, which makes it very difficult to scale up
— We can improve this by choosing only a subset of the basis functions, which gives us a sparse
regression model

— Alternatively, we can use k-means clustering to extract a set of representative points
M

* Then the model is f(x,) = Z aik(x,zV) and a is computed with the z vectors
i=1
* This also reduces inference cost
e Sparsity is generally a good idea because:
— Reduction in computational and inference cost
— Reduction in memory usage
— Makes models more interpretable
— Prevents overfitting
e Orthogonal Marching Pursuit: a greedy algorithm for sparse regression
— Procedure:
* Set k=0 and let Dy = { ¢1,...,¢n } be a dictionary of basis functions
* Initialize Iék), the set of selected basis functions, and Ic(k), the set of candidate basis functions
* Initialize 79 = y as the residual, or training error vector
* While [|r® ||y > ¢, do:

o k+k+1
o Pick i, = argmax J(¢;)
iezFD
(@.Tr(k))2
— The metric is J(¢;) = (IZ)TT where ®; is the ith column of ®
i [

— This is an approximation of the reduction in training error as a result of choosing the
ith basis function
— Think of this as checking how much the ith basis function is in the direction of the
residual error
+ Add selected basis function index to Z{¥) and remove it from Z{¥)
o Solve ¢ w® ~ y for the weights
— Note w'®) € R* since in this iteration we have k basis functions
— &™) has k columns corresponding to the basis functions
¢ Update the residual by r) = Yy — &) gp(k)
* The final sparse model is Z w; d;(x)
iez(®
— Updating the weights in each iteration can be done using incremental QR factorization to save
time
— The parameter € can be chosen via cross-validation, or other model selection criteria
e For GLMs, if minimizing the least squares error with ls regularization, we can find a more efficient

method to calculate the leave-one-out error
~Let A= K(K +)1)"' = ®(®7®) ‘@7
Let f \" denote the model constructed by leaving out the ¢th training point

R O N)
~ Then 4 — fi(z) = L2 =@

1— Ay
N . N . 2
1N (49— fa)
— Therefore the total leave-one-out error is — B
* This is a function of A, the regularization parameter; using this we can estimate the optimal

value of A
— This means we don’t have to train the model N times for each data point we leave out, making
this much more efficient
e Using [regularization can also give models that are more sparse and easy to interpret
— However with [; regularization we can no longer use linear algebra to obtain a closed form solution
— Optimization algorithms need to be used in this case
e In summary:
— If M is high or possibly infinite, use kernel methods
— If N is high, use explicit basis functions
— When both are high, options include greedy algorithms for sparsity, clustering, scholastic algorithms,
ete

wa wWa

O, O,

* W

N :
40— .

Figure 1: Comparison of I; vs ls regularization.

	Lecture 7, Feb 6, 2024
	Dual Representations of GLMs
	Kernel Selection
	Sparsity

