
Lecture 7, Feb 6, 2024
Dual Representations of GLMs

• Consider the loss function: L(w) = ∥y − ϕw∥2
2 =

N∑
i=1

(wT ϕ(x(i))− y(i))2 + λwT w

– Setting ∂L
∂w

= 0 =⇒ 2
N∑

i=1

(
wT ϕ(x(i))− y(i)a

)
ϕ(x(i)) + 2λw = 0

– Then w = − 1
λ

N∑
i=1

(
wT ϕ(x(i))− y(i)a

)
ϕ(x(i)) =

N∑
i=1

αiϕ(x(i)) = ΦT α

* αi = − 1
λ

(wT ϕ(x(i))− y(i)) are the dual variables while w are the primal variables
• Substitute w = ΦT α into the loss function: L(α) = αT ΦΦT ΦΦT α−2αT ΦΦT y+yT y+λαT ΦΦT α =

αT KKα− 2αT Ky + yT y + λαT Kα
– K = ΦΦT ∈ RN×N is the Gram matrix, which is real and symmetric
– The (i, j)th entry of K is given by Kij = ϕ(x(i))T ϕ(x(j)) = k(x(i), x(j))
– k : X × X 7→ R is the kernel

• Using the loss in terms of K, we take ∇αJ = 0 leads to α = (K + λ1)−1y

– With this solution for α we have f̂(x, w) = ϕ(x)T w = ϕ(x)T ΦT (K + λ1)−1y
– Note the ith entry of Φϕ(x) is ϕ(x(i))ϕ(x) = k(x(i), x)
– Let k(x) = { k(x(1), x), . . . , k(x(N), x) }

T
∈ RN

• The model can then be rewritten as f̂(x, w) = k(x)T (K + λ1)−1y =
N∑

i=1
αik(x, x(i))

– This is known as the dual representation
– We’ve defined our model entirely in terms of the kernel; we don’t actually need to evaluate the

basis functions themselves, and only the inner products between the bases are needed
– The choice of a kernel implicitly characterizes the feature space mapping ϕ

• Using the kernel is often much more efficient than using the basis functions explicitly
– e.g. for the polynomial features, k(x, z) = ϕ(x)T ϕ(z) = 1 + x1z1 + x2z2 + x1x2z1z2 + · · · +

x1 . . . xDz1 . . . zD =
D∏

i=1
(1 + xizi)

– The original features would need O(2D) computation time, but using the kernel this is reduced to
O(D) for the simple product

• The kernel can also be interpreted as a similarity metric, since it takes two points from X and returns a
real scalar

Definition

The kernel trick: Any linear method that can be written in terms of dot products x(i)T
x(j) can be

kernelized by replacing x(i)T
x(j) → k(x(i), x(j)), which results in a nonlinear generalization of the

linear method.

• This allows us to do kernel PCA, kernel SVM, etc
– e.g. kernel k-NN

* Distance computation in feature space is ∥ϕ(x) − ϕ(z)∥2
2 = ϕ(x)T ϕ(x) + ϕ(z)T ϕ(z) −

2ϕ(x)T ϕ(z)
* Replace this by k(x, x) + k(z, z)− 2k(x, z) to kernelize it

• Even though we derived this result for the squared loss specifically, the representer theorem states that
this kernel form of the model will always be able to minimize the loss

1



Kernel Selection

• The kernel function must define a dot product for some Hilbert space F , which means it must be
symmetric and positive semi-definite

– Symmetry means k(x, z) = k(z, x)
– PSD means

x
u(x)k(x, z)u(z) dx dz ≥ 0 for all square integrable functions u

– By extension this means:
* K is positive semi-definite
* Cauchy-Schwartz inequality: k(z, z) ≤

√
k(x, x)k(z, z)

* Definiteness: k(x, x) ≥ 0
– This all makes sense intuitively if the kernel is interpreted as a distance metric

• Example kernels:
– Linear: k(x, z) = xT z
– Polynomial: k(x, z) = (1 + xT z)n

– Isotropic Gaussian: k(x, z) = exp
(
−1

θ
∥x− z∥2

2

)
* θ > 0 is a hyperparameter

– Anisotropic Gaussian: k(x, z) = exp(−(x− z)T Θ−1(x− z))
* Θ ∈ RD×D is symmetric positive definite and a hyperparameter

• We can go from kernels back to features, e.g. for the polynomial kernel:
– k(x, z) = (1 + x1z1 + x2z2 + · · ·+ xDzD)n

– For D = 2 and n = 2, k(x, z) = 1 + x2
1z2

1 + x2
2z2

2 + 2x1z1 + 2x2z2 + 2x1z2x2z2
– Therefore ϕ(x) =

[
1 x2

1 x2
2
√

2x1
√

2x2
√

2x1x2
]

• The feature vector can even be infinite dimensional, e.g. for the Gaussian kernel:
– For D = 1, θ = 1, k(x, z) = exp(−(x− z)2)

= exp(−x2) exp(−z2) exp(2xz)

= exp(−x2) exp(−z2)
∞∑

k=0

2kxkzk

k!

– Therefore ϕ(x) =
[
exp(−x2)

√
21

1! x1 exp(−x2)
√

22

2! x2 exp(−x2) . . .

]
• To select the kernel, we can use prior knowledge of the target function

– If the target function is known to be smooth (i.e. differentiable k times) then we can use a kernel
that also has the same degree of smoothness

– If the function is finitely smooth, use the Gaussian or another C∞ kernel
– If the function is periodic we can use a periodic kernel
– Plenty of literate exists in this area

• Radial basis functions (RBFs) are kernels that are translation invariant, i.e. their value only depends on
the distance between the features

– k(x(i), x(j)) = k(∥x(i) − x(j)∥) = k(r)
– Examples of RBF kernels:

* Gaussian: k(r) = e− r2
θ

* Multiquadratic: k(r) =
√

1 + r2

θ

* Inverse multiquadratic: k(r) = 1√
1 + r2

θ

* Matern kernels: a family including
• C0: exp

(
−r

θ

)
• C2: 1

1 + r
θ

exp
(
−r

θ

)
• C4:

(
3 + 3r

θ
+
(r

θ

)2
)

exp
(
−r

θ

)

2



– All the above kernels have θ has a hyperparameter; this is the shape parameter, where larger
values spread out the function and gives a higher value for larger values of r

Sparsity

• The regression model is f̂(x, α) =
N∑

i=1
αik(x, x(i)) where α = (K + λ1)−1y

• This can be interpreted as a GLM constructed using the N basis functions k(x, x(1)), . . . , k(x, x(N))
– We have one basis function per data point, so this is a dense regression model

• Note that when λ = 0, since we have N basis functions, we will match our N training points exactly
– This can be useful if we know that there is no noise in the training data
– When λ = 0, K is guaranteed to be non-singular if and only if the training data points are unique

• When λ > 0, K + λ1 is symmetric positive definite, so we can compute the Cholesky factorization
without worrying about singularities

– Since we never formed normal equations, we never squared the condition number, so this is stable
• Computing this will take O(N2) memory and O(N3) time, which makes it very difficult to scale up

– We can improve this by choosing only a subset of the basis functions, which gives us a sparse
regression model

– Alternatively, we can use k-means clustering to extract a set of representative points

* Then the model is f̂(x, α) =
M∑

i=1
αik(x, z(i)) and α is computed with the z vectors

* This also reduces inference cost
• Sparsity is generally a good idea because:

– Reduction in computational and inference cost
– Reduction in memory usage
– Makes models more interpretable
– Prevents overfitting

• Orthogonal Marching Pursuit: a greedy algorithm for sparse regression
– Procedure:

* Set k = 0 and let Dϕ = {ϕ1, . . . , ϕM } be a dictionary of basis functions
* Initialize I(k)

s , the set of selected basis functions, and I(k)
c , the set of candidate basis functions

* Initialize r(0) = y as the residual, or training error vector
* While ∥r(k)∥2 > ϵ, do:

• k ← k + 1
• Pick ik = argmax

i∈I(k−1)
c

J(ϕi)

– The metric is J(ϕi) = (ΦT
i r(k))2

ΦT
i Φi

where Φi is the ith column of Φ

– This is an approximation of the reduction in training error as a result of choosing the
ith basis function

– Think of this as checking how much the ith basis function is in the direction of the
residual error

• Add selected basis function index to I(k)
s and remove it from I(k)

c

• Solve ϕ(k)w(k) ≈ y for the weights
– Note w(k) ∈ Rk since in this iteration we have k basis functions
– Φ(k) has k columns corresponding to the basis functions

• Update the residual by r(k) = y −Φ(k)w(k)

* The final sparse model is
∑

i∈I(k)
s

wiϕi(x)

– Updating the weights in each iteration can be done using incremental QR factorization to save
time

– The parameter ϵ can be chosen via cross-validation, or other model selection criteria
• For GLMs, if minimizing the least squares error with l2 regularization, we can find a more efficient

3



method to calculate the leave-one-out error
– Let A = K(K + λ1)−1 = Φ(ΦT Φ)−1ΦT

– Let f̂\i denote the model constructed by leaving out the ith training point

– Then y(i) − f̂\i(x(i)) = y(i) − f̂(x(i))
1−Aii

– Therefore the total leave-one-out error is 1
N

N∑
i=1

(
y(i) − f̂(x(i))

1−Aii

)2

* This is a function of λ, the regularization parameter; using this we can estimate the optimal
value of λ

– This means we don’t have to train the model N times for each data point we leave out, making
this much more efficient

• Using l1 regularization can also give models that are more sparse and easy to interpret
– However with l1 regularization we can no longer use linear algebra to obtain a closed form solution
– Optimization algorithms need to be used in this case

• In summary:
– If M is high or possibly infinite, use kernel methods
– If N is high, use explicit basis functions
– When both are high, options include greedy algorithms for sparsity, clustering, scholastic algorithms,

etc

Figure 1: Comparison of l1 vs l2 regularization.

4


	Lecture 7, Feb 6, 2024
	Dual Representations of GLMs
	Kernel Selection
	Sparsity



