Lecture 7, Feb 6, 2024

Dual Representations of GLMs

• Consider the loss function: $\mathcal{L}(\boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{\phi}\boldsymbol{w}\|_2^2 = \sum_{i=1}^N (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) - y^{(i)})^2 + \lambda \boldsymbol{w}^T \boldsymbol{w}$ - Setting $\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}} = 0 \implies 2 \sum_{i=1}^{N} \left(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) - y^{(i)} a \right) \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) + 2\lambda \boldsymbol{w} = 0$ - Then $\boldsymbol{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} \left(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) - y^{(i)} a \right) \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) = \sum_{i=1}^{N} \alpha_{i} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) = \boldsymbol{\Phi}^{T} \boldsymbol{\alpha}_{i}$ * $\alpha_i = -\frac{1}{\gamma} (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) - y^{(i)})$ are the *dual variables* while \boldsymbol{w} are the *primal variables* • Substitute $\boldsymbol{w} = \boldsymbol{\Phi}^T \boldsymbol{\alpha}$ into the loss function: $\mathcal{L}(\boldsymbol{\alpha}) = \boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y} + \lambda \boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\alpha} = \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{K} \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y} + \lambda \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{\alpha} - \boldsymbol{K} = \boldsymbol{\Phi} \boldsymbol{\Phi}^T \in \mathbb{R}^{N \times N}$ is the *Gram matrix*, which is real and symmetric

- - The (i, j)th entry of \boldsymbol{K} is given by $K_{ij} = \boldsymbol{\phi}(\boldsymbol{x}^{(i)})^T \boldsymbol{\phi}(\boldsymbol{x}^{(j)}) = k(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$ $-k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is the *kernel*
- Using the loss in terms of K, we take $\nabla_{\alpha} J = 0$ leads to $\alpha = (K + \lambda \mathbf{1})^{-1} y$
 - With this solution for $\boldsymbol{\alpha}$ we have $\hat{f}(\boldsymbol{x}, \boldsymbol{w}) = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{w} = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\Phi}^T (\boldsymbol{K} + \lambda \mathbf{1})^{-1} \boldsymbol{y}$ Note the *i*th entry of $\boldsymbol{\Phi}\boldsymbol{\phi}(\boldsymbol{x})$ is $\boldsymbol{\phi}(\boldsymbol{x}^{(i)})\boldsymbol{\phi}(\boldsymbol{x}) = k(\boldsymbol{x}^{(i)}, \boldsymbol{x})$ Let $\boldsymbol{k}(\boldsymbol{x}) = \{k(\boldsymbol{x}^{(1)}, \boldsymbol{x}), \dots, k(\boldsymbol{x}^{(N)}, \boldsymbol{x})\}^T \in \mathbb{R}^N$

• The model can then be rewritten as $\hat{f}(\boldsymbol{x}, \boldsymbol{w}) = \boldsymbol{k}(\boldsymbol{x})^T (\boldsymbol{K} + \lambda \mathbf{1})^{-1} \boldsymbol{y} = \sum_{i=1}^N \alpha_i k(\boldsymbol{x}, \boldsymbol{x}^{(i)})$

- This is known as the *dual representation*
- We've defined our model entirely in terms of the kernel; we don't actually need to evaluate the basis functions themselves, and only the inner products between the bases are needed - The choice of a kernel implicitly characterizes the feature space mapping ϕ
- Using the kernel is often much more efficient than using the basis functions explicitly
- e.g. for the polynomial features, $k(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{z}) = 1 + x_1 z_1 + x_2 z_2 + x_1 x_2 z_1 z_2 + \cdots + x_1 z_1 z_2 + \cdots + x_1 z_1 z_2 + \cdots + z_1 z_1 z_2 + \cdots + z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_2 z_1 z_2 + \cdots + z_1 z_1 z_2 z_2 + \cdots + z_1 z_2 +$

$$x_1 \dots x_D z_1 \dots z_D = \prod_{i=1}^D (1 + x_i z_i)$$

- The original features would need $\mathcal{O}(2^D)$ computation time, but using the kernel this is reduced to $\mathcal{O}(D)$ for the simple product
- The kernel can also be interpreted as a similarity metric, since it takes two points from \mathcal{X} and returns a real scalar

Definition

The kernel trick: Any linear method that can be written in terms of dot products $\boldsymbol{x}^{(i)}{}^{T}\boldsymbol{x}^{(j)}$ can be *kernelized* by replacing $\boldsymbol{x}^{(i)} \boldsymbol{x}^{(j)} \rightarrow k(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$, which results in a nonlinear generalization of the linear method.

• This allows us to do kernel PCA, kernel SVM, etc

- e.g. kernel k-NN

- * Distance computation in feature space is $\|\phi(x) \phi(z)\|_2^2 = \phi(x)^T \phi(x) + \phi(z)^T \phi(z) \phi(z)$ $2\boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{z})$
- * Replace this by $k(\boldsymbol{x}, \boldsymbol{x}) + k(\boldsymbol{z}, \boldsymbol{z}) 2k(\boldsymbol{x}, \boldsymbol{z})$ to kernelize it
- Even though we derived this result for the squared loss specifically, the *representer theorem* states that this kernel form of the model will always be able to minimize the loss

Kernel Selection

- The kernel function must define a dot product for some Hilbert space \mathcal{F} , which means it must be symmetric and positive semi-definite
 - Symmetry means $k(\boldsymbol{x}, \boldsymbol{z}) = k(\boldsymbol{z}, \boldsymbol{x})$
 - PSD means $\iint u(\boldsymbol{x})k(\boldsymbol{x},\boldsymbol{z})u(\boldsymbol{z})\,\mathrm{d}\boldsymbol{x}\,\mathrm{d}\boldsymbol{z} \geq 0$ for all square integrable functions u
 - By extension this means:
 - * K is positive semi-definite
 - * Cauchy-Schwartz inequality: $k(\boldsymbol{z}, \boldsymbol{z}) \leq \sqrt{k(\boldsymbol{x}, \boldsymbol{x})k(\boldsymbol{z}, \boldsymbol{z})}$
 - * Definiteness: $k(\boldsymbol{x}, \boldsymbol{x}) > 0$
- This all makes sense intuitively if the kernel is interpreted as a distance metric • Example kernels:
 - Linear: $k(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{x}^T \boldsymbol{z}$
 - Polynomial: $k(\boldsymbol{x}, \boldsymbol{z}) = (1 + \boldsymbol{x}^T \boldsymbol{z})^n$

- Isotropic Gaussian:
$$k(\boldsymbol{x}, \boldsymbol{z}) = \exp\left(-\frac{1}{\theta}\|\boldsymbol{x} - \boldsymbol{z}\|_2^2\right)$$

- * $\theta > 0$ is a hyperparameter
- Anisotropic Gaussian: $k(\boldsymbol{x}, \boldsymbol{z}) = \exp(-(\boldsymbol{x} \boldsymbol{z})^T \boldsymbol{\Theta}^{-1}(\boldsymbol{x} \boldsymbol{z}))$ * $\boldsymbol{\Theta} \in \mathbb{R}^{D \times D}$ is symmetric positive definite and a hyperparameter
- We can go from kernels back to features, e.g. for the polynomial kernel:
- $k(\mathbf{x}, \mathbf{z}) = (1 + x_1 z_1 + x_2 z_2 + \dots + x_D z_D)^n$ For D = 2 and n = 2, $k(\mathbf{x}, \mathbf{z}) = 1 + x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 + 2x_2 z_2 + 2x_1 z_2 x_2 z_2$ Therefore $\phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1^2 & x_2^2 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1 x_2 \end{bmatrix}$ The feature vector can even be infinite dimensional, e.g. for the Gaussian kernel:

- For
$$D = 1, \theta = 1, k(x, z) = \exp(-(x - z)^2)$$

$$= \exp(-x^2) \exp(-z^2) \exp(2xz)$$

$$= \exp(-x^2) \exp(-z^2) \sum_{k=1}^{\infty} \frac{2^k x^k z^k}{k!}$$

- Therefore $\phi(x) = \begin{bmatrix} \exp(-x^2) & \sqrt{\frac{2^1}{1!}}x^1 \exp(-x^2) & \sqrt{\frac{2^2}{2!}}x^2 \exp(-x^2) & \dots \end{bmatrix}$

- To select the kernel, we can use prior knowledge of the target function
 - If the target function is known to be smooth (i.e. differentiable k times) then we can use a kernel that also has the same degree of smoothness
 - If the function is finitely smooth, use the Gaussian or another C^{∞} kernel
 - If the function is periodic we can use a periodic kernel
 - Plenty of literate exists in this area
- Radial basis functions (RBFs) are kernels that are translation invariant, i.e. their value only depends on the distance between the features

$$- k(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) = k(\|\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}\|) = k(r)$$

- Examples of RBF kernels: * Gaussian: $k(r) = e^{-\frac{r^2}{\theta}}$
 - * Gaussian: $k(r) = e^{-\theta}$ * Multiquadratic: $k(r) = \sqrt{1 + \frac{r^2}{\theta}}$
 - * Inverse multiquadratic: $k(r) = \frac{1}{\sqrt{1 + \frac{r^2}{a}}}$
 - * Matern kernels: a family including

•
$$C^{0}$$
: $\exp\left(-\frac{r}{\theta}\right)$
• C^{2} : $\frac{1}{1+\frac{r}{\theta}}\exp\left(-\frac{r}{\theta}\right)$
• C^{4} : $\left(3+3\frac{r}{\theta}+\left(\frac{r}{\theta}\right)^{2}\right)\exp\left(-\frac{r}{\theta}\right)$

- All the above kernels have θ has a hyperparameter; this is the shape parameter, where larger values spread out the function and gives a higher value for larger values of r

Sparsity

• The regression model is
$$\hat{f}(\boldsymbol{x}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i k(\boldsymbol{x}, \boldsymbol{x}^{(i)})$$
 where $\boldsymbol{\alpha} = (\boldsymbol{K} + \lambda \mathbf{1})^{-1} \boldsymbol{y}$

- This can be interpreted as a GLM constructed using the N basis functions $k(\boldsymbol{x}, \boldsymbol{x}^{(1)}), \ldots, k(\boldsymbol{x}, \boldsymbol{x}^{(N)})$ - We have one basis function per data point, so this is a *dense* regression model
- Note that when $\lambda = 0$, since we have N basis functions, we will match our N training points exactly - This can be useful if we know that there is no noise in the training data
 - When $\lambda = 0$, K is guaranteed to be non-singular if and only if the training data points are unique
- When $\lambda > 0$, $K + \lambda \mathbf{1}$ is symmetric positive definite, so we can compute the Cholesky factorization without worrying about singularities
- Since we never formed normal equations, we never squared the condition number, so this is stable • Computing this will take $\mathcal{O}(N^2)$ memory and $\mathcal{O}(N^3)$ time, which makes it very difficult to scale up
 - We can improve this by choosing only a subset of the basis functions, which gives us a *sparse* regression model
 - Alternatively, we can use k-means clustering to extract a set of representative points

* Then the model is
$$\hat{f}(\boldsymbol{x}, \boldsymbol{\alpha}) = \sum_{i=1}^{M} \alpha_i k(\boldsymbol{x}, \boldsymbol{z}^{(i)})$$
 and $\boldsymbol{\alpha}$ is computed with the \boldsymbol{z} vectors

- * This also reduces inference cost
- Sparsity is generally a good idea because:
 - Reduction in computational and inference cost
 - Reduction in memory usage
 - Makes models more interpretable
 - Prevents overfitting
- Orthogonal Marching Pursuit: a greedy algorithm for sparse regression
 - Procedure:
 - * Set k = 0 and let $\mathcal{D}_{\phi} = \{\phi_1, \dots, \phi_M\}$ be a dictionary of basis functions
 - * Initialize $\mathcal{I}_{s}^{(k)}$, the set of selected basis functions, and $\mathcal{I}_{c}^{(k)}$, the set of candidate basis functions * Initialize $\mathbf{r}^{(0)} = \mathbf{y}$ as the residual, or training error vector

 - * While $\|\boldsymbol{r}^{(k)}\|_2 > \epsilon$, do:
 - $k \leftarrow k+1$

• Pick
$$i_k = \underset{i \in \mathcal{T}^{(k-1)}}{\operatorname{argmax}} J(\phi_i)$$

The metric is
$$J(\phi_i) = \frac{(\mathbf{\Phi}_i^T \mathbf{r}^{(k)})^2}{\mathbf{\Phi}_i^T \mathbf{\Phi}_i}$$
 where $\mathbf{\Phi}_i$ is the *i*th column of $\mathbf{\Phi}$

- This is an approximation of the reduction in training error as a result of choosing the *i*th basis function
- Think of this as checking how much the *i*th basis function is in the direction of the residual error
- Add selected basis function index to $\mathcal{I}_s^{(k)}$ and remove it from $\mathcal{I}_c^{(k)}$ Solve $\phi^{(k)} \boldsymbol{w}^{(k)} \approx \boldsymbol{y}$ for the weights Note $\boldsymbol{w}^{(k)} \in \mathbb{R}^k$ since in this iteration we have k basis functions
- - $\mathbf{\Phi}^{(k)}$ has k columns corresponding to the basis functions
- Update the residual by $\mathbf{r}^{(k)} = \mathbf{y} \mathbf{\Phi}^{(k)} \mathbf{w}^{(k)}$ * The final sparse model is $\sum_{i \in \mathcal{I}_s^{(k)}} w_i \phi_i(\mathbf{x})$
- Updating the weights in each iteration can be done using incremental QR factorization to save time
- The parameter ϵ can be chosen via cross-validation, or other model selection criteria
- For GLMs, if minimizing the least squares error with l_2 regularization, we can find a more efficient

- method to calculate the leave-one-out error Let $\mathbf{A} = \mathbf{K}(\mathbf{K} + \lambda \mathbf{1})^{-1} = \mathbf{\Phi}(\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T$ Let $\hat{f}^{\setminus i}$ denote the model constructed by leaving out the *i*th training point

- Then
$$y^{(i)} - \hat{f}^{\setminus i}({m x}^{(i)}) = rac{y^{(i)} - \hat{f}({m x}^{(i)})}{1 - A_{ii}}$$

- Therefore the total leave-one-out error is $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{y^{(i)} \hat{f}(\boldsymbol{x}^{(i)})}{1 A_{ii}} \right)^2$
 - * This is a function of λ , the regularization parameter; using this we can estimate the optimal value of λ
- This means we don't have to train the model N times for each data point we leave out, making this much more efficient
- Using l_1 regularization can also give models that are more sparse and easy to interpret
 - However with l_1 regularization we can no longer use linear algebra to obtain a closed form solution
 - Optimization algorithms need to be used in this case
- In summary:
 - If M is high or possibly infinite, use kernel methods
 - If N is high, use explicit basis functions
 - When both are high, options include greedy algorithms for sparsity, clustering, scholastic algorithms, etc

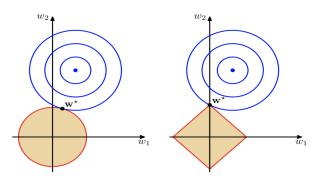


Figure 1: Comparison of l_1 vs l_2 regularization.