
Lecture 6, Feb 2, 2024
Generalized Linear Models (GLMs)

Definition

Generalized Linear Models: A GLM is given by

f̂(x, w) = w0 +
M−1∑
i=1

wiϕi(x)

where w is a set of undetermined weigths and ϕi : RD 7→ R are a set of known basis functions.

• The models may be nonlinear in the inputs x, but still linear in the weights w, which makes is still
possible to use linear techniques

• To construct a GLM we need to select the appropriate basis functions, and formulate a strategy to
estimate the weights

• Let ϕ0(x) = 1 (the bias term) and ϕ(x) =


ϕ0(x)
ϕ1(x)

...
ϕM−1(x)

 ∈ RM

– Then if we define the weight vector w =
[
w0 . . . wm

]T , we can write f̂(x, w) = wT ϕ(x)
– We are using ϕ to map from the input space X to the feature space F , and performing linear

regression in the feature space
• Let the vector of training targets y =

[
y(1) . . . y(N)]T ∈ RN and Φ ∈ RN×M where the ith row

contains ϕ(x(i)) ∈ RM

– Then ŷ = Φw
• Use the l2 loss function ŵ = argmin

w∈RM

∥y − ŷ∥2
2

– Again the loss function can be written as (y − Φw)T (y − Φw)
– We can use the same techniques for the linear model, but instead of D + 1 weights we have M

weights
– We essentially replace X ∈ RN×(D+1) with Φ ∈ RN×M

• Derivation:
– L(w) = yT y + wT ΦT Φw − 2yT Φw

– ∂L
∂w

= (ΦT Φ + (ΦT Φ)T )w − 2ΦT y = 2ΦT Φw − 2ΦT y = 0
– Therefore ΦT Φw = ΦT y

• We can use the same techniques as linear models to solve the normal equations:
– Cholesky factorization

* Avoid this because the condition number is squared
– (Economy) QR factorization

* Use this only if Φ is not rank-deficient
– (Economy) SVD, or truncated SVD if Φ is rank-deficient

* Slowest, but the most stable

Polynomial Regression

• The basis functions are the univariate polynomials { 1, xi, x2
i , . . . , xp

i } up to order p

• If D = 1, then the basis functions are ϕi = xi so f̂(x) = w0 + w1x + · · · + wpxp

– Note taking tensor products of higher-order univariate polynomials is not a good idea since we
will generate pD basis functions
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– For arbitrary D we would have ϕ(x) =



1
x1
...

xD

x1x2
...

xD−1xD

...
x1x2 . . . xD


– We can circumvent this with the kernel trick covered later

Figure 1: 1D polynomial regression for various values of p. (Note M = p + 1.)

• Results for various values of p are shown above
– Notice that for smaller values of p the model doesn’t fit well since it doesn’t have enough complexity

(underfitting)
– But for large values of p, the polynomial matches the training points perfectly but approximates

the underlying function poorly
• To prevent overfitting, we need to restrict the number of features M (which in this case restricts the

degree of the polynomial
– Increasing the number of data points also helps but we often can’t just get more data
– What if we know the underlying model is complex but we don’t have enough data points?
– How do we deal with noise?

Regularization

• One pattern we may notice is that when the model is overfitting (M too large), the weights start
becoming very big in magnitude

• Regularization tries to keep the magnitudes of the weights reasonably small, as a way to prevent
overfitting

• To keep the weight small, we can introduce the norm of the weights to the loss function, so the model
is penalized for having weights that are too large
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Definition

Ridge Regression Method: Choose the weights as

ŵ = argmin
w∈RM

|y − Φw|22 + λ∥w∥2
2

where λ is the regularization parameter.

• Note w0 is often excluded from the regularization term
• The regularized loss function is also quadratic in w, so we can use the same steps as before

– Expanded loss: yT y + wT ΦT Φw − 2wT ΦT y + λwT w

– ∂L
∂w

= 2ΦT Φw − 2ΦT y + 2λw = 0
– Rearrange: ΦT Φw + λw = ΦT y =⇒ (ΦT Φ + λ1)w = ΦT y

* Therefore l2 regularization is equivalent to adding a small positive perturbation to the diagonal
of ΦT Φ

* We saw this in a previous lecture – this also helps with ill-conditioning
* If λ is sufficiently large we can avoid ill-conditioning completely

• Using SVD: Φ = UΣV T

– ((UΣV T )T UΣV T + λ1)w = (UΣV T )T y
– Simply to get V (ΣT Σ + λ1)V T w = V ΣT UT y
– Multiply each side by V T to get (ΣT Σ + λ1)V T w = ΣT UT y
– Therefore w = V (ΣT Σ + λ1)−1ΣT UT y

– This can be rewritten as ŵ(λ) =
M∑

i=1
vi

σiu
T
i y

σ2
i + λ

* vi, ui are the ith columns of V and U
* If 0 ≈ σi ≪ λ this goes to 0
* If σi ≫ λ this goes to the original unregularized solution

• The regularization has almost no impact on the contributions of large singular values but zeros out the
contribution of smaller singular values

Figure 2: The same polynomial regression from above for p = 9, with different values of λ.

• λ is an important hyperparameter
– Notice that with a reasonable value of λ we have a pretty good model even at p = 9
– However if the regularization is too extreme, the model will underfit as the loss is too focused on

minimizing ∥w∥2
2

• To estimate λ we can again use ν-fold cross-validation just like we chose k for k-NN
– If the training dataset is small we can use leave-one-out cross-validation (i.e. ν = 1)
– There are fast algorithms for calculating this
– Use cross-validation to select the best value of λ, then retrain the model on all the data using this

new value
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