Lecture 5, Jan 26, 2024

Principal Component Analysis (PCA)

N .
Dimensionality Reduction: Given a dataset D = {w(z) }i_, where 2 € RP, find a mapping

(3
f: RP  R? where d < D is a lower dimensional space.

¢ Dimensionality reduction is a type of unsupervised learning
— PCA is a dimensionality reduction technique
— Other techniques can include autoencoders, etc
e Dimensionality reduction can be used for a number of purposes:
— Saving computational time/memory (helps with the curse of dimensionality)
— Reduces overfitting
— Visualize high-dimensional datasets
e We're essentially trying to create a summary of the data
o PCA is one of the only dimensionality reduction techniques with a closed-form solution
« PCA uses a linear model with the form z = UT (z — b) where U € RP*? is an orthonormal matrix and
beR”
— These orthonormal columns form a basis for a subspace &
— The projection of @ onto S is the point & € S closes to x (this is known as the reproduction of x
— z is the representation or code of x
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e Choose b= N Z x®
e Finding a generia:llmatrix U is challenging, so we will start with a Nsingle column vector u
~ We aim to minimize the reconstruction error: £(u,b) = %Z”m(l) — (uuT () — b) + b)| 2
* 3 —uz+b=uu(x—b) +b -
— If the data is centered then b =0, so L(u) = % i”:c(i) —uuTz®|3
o Expanding the reconstruction error: =

N
Z(m(i) —uue) T (2 — yuT2z®)
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— So we can formate the problem as minimizing N Z 2" wuTz® subject to ulu =1
i=1
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=1 =1
| XN
o Note the mean of z is zero since we centered @ so the objective function is equivalent to N ZHz(l) —z|3
i=1
— Minimizing the reconstruction error is equivalent to maximizing the variance of the code vectors
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— We can decompose X since it is symmetric positive definite, as it is the empirical covariance matrix
— a = QTu is a change of basis to the eigenbasis of 3
o Assuming all \; are sorted and distinct, we can choose a; = £1 and a; = 0 (since the first eigenvalue is
the largest eigenvalue) in order to maximize the objective
— Therefore u = Qa = q; which is just the top eigenvector
— More generally, we can show that the kth principal component is given by the kth eigenvector of
Y (Courant-Fischer Theorem)
e Alternative derivation: we want to maximize a
— The Lagrangian is £(u,7) =« Zu 4+ v(1 — u’u)
- 6u£:(E+ET)u—2'ylu=O = 2¥u =2yu = Xu=r"u
e We can also perform PCA with SVD:

1
— If X is a data matrix written in centered form, then the covariance matrix is 3 = NX Tx

1
— Using an SVD, we can write & = VS,U{ U, SV7T = NVS%VT

— Since this is equal to QAQT and spectral decompositions are unique, we must have that the
2

S
columns of V' are the principal components and Wl =A
— So to construct the PCA we can just take the first d columns
— Using SVD is faster and more stable
o Note the code vectors given by PCA are de-correlated (i.e. their covariance matrix is diagonal)
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