
Lecture 5, Jan 26, 2024
Principal Component Analysis (PCA)

Definition

Dimensionality Reduction: Given a dataset D = { x(i) }
N

i=1 where x(i) ∈ RD, find a mapping
f : RD 7→ Rd where d < D is a lower dimensional space.

• Dimensionality reduction is a type of unsupervised learning
– PCA is a dimensionality reduction technique
– Other techniques can include autoencoders, etc

• Dimensionality reduction can be used for a number of purposes:
– Saving computational time/memory (helps with the curse of dimensionality)
– Reduces overfitting
– Visualize high-dimensional datasets

• We’re essentially trying to create a summary of the data
• PCA is one of the only dimensionality reduction techniques with a closed-form solution
• PCA uses a linear model with the form z = UT (x − b) where U ∈ RD×d is an orthonormal matrix and

b ∈ RD

– These orthonormal columns form a basis for a subspace S
– The projection of x onto S is the point x̃ ∈ S closes to x (this is known as the reproduction of x
– z is the representation or code of x

• Choose b = 1
N

N∑
i=1

x(i)

• Finding a general matrix U is challenging, so we will start with a single column vector u

– We aim to minimize the reconstruction error: L(u, b) = 1
N

N∑
i=1

∥x(i) − (uuT (x(i) − b) + b)∥2
2

* x̂(i) = uz + b = uuT (x − b) + b

– If the data is centered then b = 0, so L(u) = 1
N

N∑
i=1

∥x(i) − uuT x(i)∥2
2

• Expanding the reconstruction error:

– L(u) = 1
N

N∑
i=1

(x(i) − uuT x(i))T (x(i) − uuT x(i))

= 1
N

n∑
i=1

−2x(i)T
uuT x(i) + x(i)T

uuT uuT x(i) + const

= 1
N

N∑
i=1

−x(i)T
uuT x(i) + const

– So we can formate the problem as minimizing − 1
N

N∑
i=1

x(i)T
uuT x(i) subject to uT u = 1

– Equivalently, maximize 1
N

N∑
i=1

x(i)T
uuT x(i) = 1

N

N∑
i=1

∥z(i)∥2
2 subject to uT u = 1

• Note the mean of z is zero since we centered x so the objective function is equivalent to 1
N

N∑
i=1

∥z(i) − z̄∥2
2

– Minimizing the reconstruction error is equivalent to maximizing the variance of the code vectors
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• 1
N

N∑
i=1

∥z(i)∥2
2 = 1

N

N∑
i=1

uT (x(i) − µ)(x(i) − µ)T u

= uT

[
1
N

N∑
i=1

(x(i) − µ)(x(i) − µ)T

]
u

= uT Σu

= uT QΛQT u

= aT Λa

=
D∑

j=1
λja2

j

– We can decompose Σ since it is symmetric positive definite, as it is the empirical covariance matrix
– a = QT u is a change of basis to the eigenbasis of Σ

• Assuming all λi are sorted and distinct, we can choose a1 = ±1 and aj = 0 (since the first eigenvalue is
the largest eigenvalue) in order to maximize the objective

– Therefore u = Qa = q1 which is just the top eigenvector
– More generally, we can show that the kth principal component is given by the kth eigenvector of

Σ (Courant-Fischer Theorem)
• Alternative derivation: we want to maximize a

– The Lagrangian is L(u, γ) = uT Σu + γ(1 − uT u)
– ∇⃗uL = (Σ + ΣT )u − 2γ1u = 0 =⇒ 2Σu = 2γu =⇒ Σu = γu

• We can also perform PCA with SVD:
– If X is a data matrix written in centered form, then the covariance matrix is Σ = 1

N
XT X

– Using an SVD, we can write Σ = V S1UT
1 U1SV T = 1

N
V S2

1V T

– Since this is equal to QΛQT and spectral decompositions are unique, we must have that the

columns of V are the principal components and S2
1

N
= Λ

– So to construct the PCA we can just take the first d columns
– Using SVD is faster and more stable

• Note the code vectors given by PCA are de-correlated (i.e. their covariance matrix is diagonal)
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