Lecture 4, Jan 23, 2024

Linear Regression

D
« A linear model in general is represented by f(z, w) = wo + Z w;Tq
j=1
- w={wo,...,wp }T € RP*! are undetermined weights of the model

— This is a parametric supervised learning technique
N D _ 2
o Using least squares loss gives the optimization problem: @ = argmin Z y(’) —wy — Z wjxg-l)
weRPH i j=1

~ Let the dummy feature zo = 1, then we have = {z0,...,2p }' € RP*! so f(z,w) = w’x

— Let X € RVX(P+1 guch that the ith row contains m(i), ie. X;; = xy); this allows us to write the
vector of predictions as §§ = Xw € RY
T
— Let y = {y(l),...,y(N)} e RY

« The problem is then 1 = argmin |y — Xw||3
weRD+1

— The loss function is L(w) = ||y — Xw|2 = (y — Xw)" (y — Xw)
- aanV = %(yTy +wT XTXw - 2y" Xw)
=2XTXw-2XTy
=2XT(Xw—-y)=0
0 0
* Note: E(ZTAZ) = (A4 ATz, a—z(
o Therefore we need to solve XT Xw = XTy
— XTX is invertible if X is full rank, i.e. if the features are linearly independent
* Note equations of this form are known as normal equations
— Can be interpreted as a projection scheme since we are enforcing that (y —g) L X for all columns
X; of X (the residual should be orthogonal to the column space)
e We're essentially trying to solve Xw = y where X € RVX(PHD) 4y € RPFL, y e RY
— The problem is overdetermined if N > D+1 (i.e. we have more data points than feature dimensions,
so X is tall and skinny)
* We therefore cannot find w to solve this equation, so we can only minimize the residual
— The problem is undetermined if N < D + 1 (i.e. we have more dimensions than data points, so X
is short and fat)
* This would have an infinite number of solutions, so we need to impose additional constraints

Az) = AT

Solving for the Weights

e Cholesky decomposition: X7 X = RT R where R € RPFUX(DF1) g upper triangular
— Note this is only possible since X X is symmetric positive definite if it is full rank
Then we have w = (XTX) !XTy =R 'R TXTy
* Note R°T = (R°H)T = (RT)!
Computationally this involves a forward and backward substitution to invert the upper and lower
triangular matrices
* First solve for z = R~ Ta Ty, then w = R™'z
* Both inverses are easy to compute due to them being triangular
— Note it is common to add a small perturbation, replacing X7 X with X7 X + AI to prevent
ill-conditioning; this is equivalent to Iy regularization
— Cost: O(N(D +1)? + $(D +1)*)
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* Computing R takes mn? + gn?’ flops
o Economic QR (aka. reduced or thin QR): X = QR where Q € RNV*(P+1) g orthonormal, R €



RPHDX(D+1) g upper-triangular
- XTXw=XTy = RTQTQTRw=RT'Q"y — RTRw = R"Q"y
— Then we have w = R™1QTy
— Note instead of directly inverting R, we again use a backward substitution
— This method can fail when X is nearly rank-deficient (i.e. two data points being close together);
in this case, SVD is a more robust option
Cost: O(2N(D +1)? + 2(D + 1)3) (approximate)
* QR factorization costs about 2mn? flops; for m > n Cholesky is faster, but only a factor of 2
at most
e Singular value decomposition: X = UXVT where U € RVXN vV ¢ RPFDX (D) gre orthogonal and
» e RVX(PHD g rectangular diagonal

— Note we can write this as X = [Ul Ug] F(:)l} Vior X = UlZ]lVT
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Ul 2, viw
v Xoli = 070 - xwlt = | [5¥) - [P0 =10y - =Tl + ofus
2

* Since U is orthogonal, we can multiply any vector by it and not change the norm
D+1
— We can now minimize this by choosing W = VZl_lUlTy = Z v;
i=1
* The summation format is more efficient since X is diagonal
* If some singular values are very small, we can truncate this summation for better numerical
stability
— Alternatively the same result can be obtained by simply substituting the SVD into the original
expression
— Cost: O(2N(D +1)*> +11N(D + 1)?) (approximate)
+ Moore-Penrose pseudoinverse: X' = (X7 X)"'xT = vxiuT
~ Then @ = X'y when X is full rank (so X7 X is symmetric positive definite)
— Using QR and SVD we can also write X7 = R7!QT or XT = VEl_lUlT
— If X is rank deficient, then we can take w = VZIUlT Y

1
-~ 0;>0
*EJ{—diag{ai,...,UTDH}andoJ—{"i ’

u;
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0  otherwise

e The condition number for linear least-squares is defined as x(X) = || X|||| XT| = Tmax

— This is a measure of the sensitivity of the weights to perturbations in the trairnllilrrig data
— High condition numbers can occur in learning problems where the features are strongly correlated
— Rule of thumb: one digit of precision is lost for every power of 10 in the condition number
* e.g. IEEE doubles have 16 digits of accuracy, so if a matrix has a condition number of 10'° we
will only get 6 digits of accuracy
— Note k(X7 X) = (k(X))?, i.e. when solving normal equations we square the condition number!
* j(XTX + M) < x(XTX) for all positive A
— On the other hand, performing QR and SVD decomposition keeps the same condition number, so
using these methods are a lot more stable
e In general SVD is more expensive than QR and Cholesky, but more numerically stable and can handle
rank deficiencies
— Which one to use is problem dependent
— From Cholesky to QR to SVD we have increasing stability but also computational cost
o Storing X,y use O(ND) + O(N) memory
— Using economy QR and SVD will require additional O(N D) memory
* Full QR and SVD is never practical for large datasets!
— If the problem is too large to fit into memory, we will need iterative methods that compute the
result term-by-term
e Another alternative is to use gradient descent
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— Each iteration requires an additional O(ND) cost

Underdetermined Least Squares

o Assume that rank(X) =N
o We need to impose additional constraints to get a unique solution
¢ Heavily underdetermined equations routinely arise in the field of compressive sensing and bioinformatics

« One approach is to use @ = argmin ||w||3 such that Xw =y
weRDP+1
— This gives the minimum norm solution to the least squares-problem

— Let A € RY be the Lagrange multipliers
— The Lagrangian is L(w,\) = w w + AT (Xw — y)
— The optimality condition is VL = 2w + XA =0 and VAL = Xw —y =0
1
* Solve: w = —§XTA and A = —2(XXT) "y

— Therefore v = X7 (X XT) 'y
* Note in practice we do not calculate this inverse explicitly but instead use a factorization
scheme for better stability
— Other options for constraints also exist such as minimizing the 1-norm
« Using QR factorization: factorize X7 = QR, then w = QR Ty
e Using economy SVD: X7 = U2, V7T, then @ = Ulzl_lVTy
— If X7 is not full rank we can use the same thresholding technique as overdetermined least squares
(ignoring nearly zero singular values)

Regression Models for Classification

 For a binary classification problem (y = 41, —1), consider a model that minimizes the l5 loss and makes
predictions as sgn f(x)
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Figure 2: The model after including additional training points.



o Notice that in the example above, the model became much worse after including the additional data
— This is because we used a loss function that is inappropriate for classification!
o Make the labels instead y € {0,1}, and normalize the predictions using the logistic (aka sigmoid)

function: o(2) = ——— and make predictions as § = o(wTx) and threshold at 0.5

l1+e
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Figure 3: Plot of the logistic function.

e We can interpret ¢ as the estimated probability of y = 1, and use a loss function that captures the idea

that more confidence on a wrong prediction should incur a higher penalty
N

1 . . . .
— For this, use cross-entropy loss: Log(w) = i Z [—y(l) log 9 — (1 — D) log(1 — §™)
i=1
e Note for multi-class classification, we can have successive classifiers that pick out one class at a time
(Lecture 2), or formulate as a multi-output regression problem and use one-hot encodings
N
- 1 , . .
. — - = () _ 4 (1)) (0
Note the gradient: Vo, Lop(w) = I ;(y y'" N
— The gradient is the same as the gradient of the least squares loss; this is not a coincidence
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Figure 4: Plot of the cross-entropy loss.



	Lecture 4, Jan 23, 2024
	Linear Regression
	Solving for the Weights
	Underdetermined Least Squares
	Regression Models for Classification



