
Lecture 4, Jan 23, 2024
Linear Regression

• A linear model in general is represented by f̂(x, w) = w0 +
D∑

j=1
wjxd

– w = {w0, . . . , wD }T ∈ RD+1 are undetermined weights of the model
– This is a parametric supervised learning technique

• Using least squares loss gives the optimization problem: ŵ = argmin
w∈RD+1

N∑
i=1

y(i) − w0 −
D∑

j=1
wjx

(i)
j

2

– Let the dummy feature x0 = 1, then we have x = {x0, . . . , xD }T ∈ RD+1 so f̂(x, w) = wT x

– Let X ∈ RN×(D+1) such that the ith row contains x(i), i.e. Xij = x
(i)
j ; this allows us to write the

vector of predictions as ŷ = Xw ∈ RN

– Let y = { y(1), . . . , y(N) }
T
∈ RN

• The problem is then ŵ = argmin
w∈RD+1

∥y −Xw∥2
2

– The loss function is L(w) = ∥y −Xw∥2
2 = (y −Xw)T (y −Xw)

– ∂L
∂W

= ∂

∂w
(yT y + wT XT Xw − 2yT Xw)

= 2XT Xw − 2XT y

= 2XT (Xw − y) = 0

* Note: ∂

∂z
(zT Az) = (A + AT )z, ∂

∂z
(Az) = AT

• Therefore we need to solve XT Xw = XT y
– XT X is invertible if X is full rank, i.e. if the features are linearly independent

* Note equations of this form are known as normal equations
– Can be interpreted as a projection scheme since we are enforcing that (y− ŷ) ⊥Xi for all columns

Xi of X (the residual should be orthogonal to the column space)
• We’re essentially trying to solve Xw = y where X ∈ RN×(D+1), w ∈ RD+1, y ∈ RN

– The problem is overdetermined if N > D+1 (i.e. we have more data points than feature dimensions,
so X is tall and skinny)

* We therefore cannot find w to solve this equation, so we can only minimize the residual
– The problem is undetermined if N < D + 1 (i.e. we have more dimensions than data points, so X

is short and fat)
* This would have an infinite number of solutions, so we need to impose additional constraints

Solving for the Weights

• Cholesky decomposition: XT X = RT R where R ∈ R(D+1)×(D+1) is upper triangular
– Note this is only possible since XT X is symmetric positive definite if it is full rank
– Then we have ŵ = (XT X)−1XT y = R−1R−T XT y

* Note R−T = (R−1)T = (RT )−1

– Computationally this involves a forward and backward substitution to invert the upper and lower
triangular matrices

* First solve for z = R−T xT y, then w = R−1z
* Both inverses are easy to compute due to them being triangular

– Note it is common to add a small perturbation, replacing XT X with XT X + λI to prevent
ill-conditioning; this is equivalent to l2 regularization

– Cost: O(N(D + 1)2 + 1
3 (D + 1)3)

* Computing R takes mn2 + 1
3n3 flops

• Economic QR (aka. reduced or thin QR): X = QR where Q ∈ RN×(D+1) is orthonormal, R ∈

1



R(D+1)×(D+1) is upper-triangular
– XT Xw = XT y =⇒ RT QT QT Rw = RT QT y =⇒ RT Rw = RT QT y
– Then we have ŵ = R−1QT y
– Note instead of directly inverting R, we again use a backward substitution
– This method can fail when X is nearly rank-deficient (i.e. two data points being close together);

in this case, SVD is a more robust option
– Cost: O(2N(D + 1)2 + 2

3 (D + 1)3) (approximate)
* QR factorization costs about 2mn2 flops; for m≫ n Cholesky is faster, but only a factor of 2

at most
• Singular value decomposition: X = UΣV T where U ∈ RN×N , V ∈ R(D+1)×(D+1) are orthogonal and

Σ ∈ RN×(D+1) is rectangular diagonal

– Note we can write this as X =
[
U1 U2

] [
Σ1
0

]
V T or X = U1Σ1V T

– ∥y −Xw∥2
2 = ∥UT (y −Xw)∥2

2 =
∥∥∥∥[

UT
1 y

U2y

]
−

[
Σ1V T w

0

]∥∥∥∥2

2
= ∥UT

1 y −Σ1V T w∥2
2 + ∥UT

2 y∥2
2

* Since U is orthogonal, we can multiply any vector by it and not change the norm

– We can now minimize this by choosing ŵ = V Σ−1
1 UT

1 y =
D+1∑
i=1

vi
uT

i y

σi

* The summation format is more efficient since Σ is diagonal
* If some singular values are very small, we can truncate this summation for better numerical

stability
– Alternatively the same result can be obtained by simply substituting the SVD into the original

expression
– Cost: O(2N(D + 1)2 + 11N(D + 1)3) (approximate)

• Moore-Penrose pseudoinverse: X† = (XT X)−1XT = V Σ†UT

– Then ŵ = X†y when X is full rank (so XT X is symmetric positive definite)
– Using QR and SVD we can also write X† = R−1QT or X† = V Σ−1

1 UT
1

– If X is rank deficient, then we can take ŵ = V Σ†
1UT

1 y

* Σ†
1 = diag {σ†

1, . . . , σ†
D+1 } and σ†

i =
{

1
σi

σi > 0
0 otherwise

• The condition number for linear least-squares is defined as κ(X) = ∥X∥∥X†∥ = σmax

σmin
– This is a measure of the sensitivity of the weights to perturbations in the training data
– High condition numbers can occur in learning problems where the features are strongly correlated
– Rule of thumb: one digit of precision is lost for every power of 10 in the condition number

* e.g. IEEE doubles have 16 digits of accuracy, so if a matrix has a condition number of 1010 we
will only get 6 digits of accuracy

– Note κ(XT X) = (κ(X))2, i.e. when solving normal equations we square the condition number!
* κ(XT X + λI) ≤ κ(XT X) for all positive λ

– On the other hand, performing QR and SVD decomposition keeps the same condition number, so
using these methods are a lot more stable

• In general SVD is more expensive than QR and Cholesky, but more numerically stable and can handle
rank deficiencies

– Which one to use is problem dependent
– From Cholesky to QR to SVD we have increasing stability but also computational cost

• Storing X, y use O(ND) +O(N) memory
– Using economy QR and SVD will require additional O(ND) memory

* Full QR and SVD is never practical for large datasets!
– If the problem is too large to fit into memory, we will need iterative methods that compute the

result term-by-term
• Another alternative is to use gradient descent

2



– w ← w − α

2N
∇⃗wL = w − α

N
XT (ŷ − y) = w − α

N

N∑
i=1

(ŷ(i) − y(i))x(i)

– Each iteration requires an additional O(ND) cost

Underdetermined Least Squares

• Assume that rank(X) = N
• We need to impose additional constraints to get a unique solution
• Heavily underdetermined equations routinely arise in the field of compressive sensing and bioinformatics
• One approach is to use ŵ = argmin

w∈RD+1
∥w∥2

2 such that Xw = y

– This gives the minimum norm solution to the least squares-problem
– Let λ ∈ RN be the Lagrange multipliers
– The Lagrangian is L(w, λ) = wT w + λT (Xw − y)
– The optimality condition is ∇⃗wL = 2w + XT λ = 0 and ∇⃗λL = Xw − y = 0

* Solve: w = −1
2XT λ and λ = −2(XXT )−1y

– Therefore ŵ = XT (XXT )−1y
* Note in practice we do not calculate this inverse explicitly but instead use a factorization

scheme for better stability
– Other options for constraints also exist such as minimizing the 1-norm

• Using QR factorization: factorize XT = QR, then ŵ = QR−T y
• Using economy SVD: XT = U1Σ1V T , then ŵ = U1Σ−1

1 V T y
– If XT is not full rank we can use the same thresholding technique as overdetermined least squares

(ignoring nearly zero singular values)

Regression Models for Classification

• For a binary classification problem (y = +1,−1), consider a model that minimizes the l2 loss and makes
predictions as sgn f̂(x)

Figure 1: The case of two linearly separable classes that are in clusters.

Figure 2: The model after including additional training points.

3



• Notice that in the example above, the model became much worse after including the additional data
– This is because we used a loss function that is inappropriate for classification!

• Make the labels instead y ∈ { 0, 1 }, and normalize the predictions using the logistic (aka sigmoid)
function: σ(z) = 1

1 + e−z
and make predictions as ŷ = σ(wT x) and threshold at 0.5

Figure 3: Plot of the logistic function.

• We can interpret ŷ as the estimated probability of y = 1, and use a loss function that captures the idea
that more confidence on a wrong prediction should incur a higher penalty

– For this, use cross-entropy loss: LCE(w) = 1
N

N∑
i=1

[
−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

]
• Note for multi-class classification, we can have successive classifiers that pick out one class at a time

(Lecture 2), or formulate as a multi-output regression problem and use one-hot encodings

• Note the gradient: ∇⃗wLCE(w) = 1
N

N∑
i=1

(ŷ(i) − y(i))x(i)

– The gradient is the same as the gradient of the least squares loss; this is not a coincidence

Figure 4: Plot of the cross-entropy loss.

4


	Lecture 4, Jan 23, 2024
	Linear Regression
	Solving for the Weights
	Underdetermined Least Squares
	Regression Models for Classification



