
Lecture 3, Jan 16, 2024
k-Nearest Neighbours

Definition

k-Nearest Neighbours: The prediction for a test point x∗ is computed as the average output across
the k nearest neighbours in the training dataset:

f̂(x∗) = 1
k

∑
i∈Nk(x∗)

y(i)

where Nk(x∗) is the set of k training cases with inputs closest to x∗. Alternatively, we can use a
weighted average with each weight being inversely proportional to the neighbour’s distance from x∗.

• k-NN assumes that similar inputs have similar outputs – we’re making an assumption on the smoothness
of the underlying function

– This is a memory-based method and does not require any model to be fit
– k-NN is able to achieve Bayes optimality

Figure 1: k-NN classifiers for different values of k.

• This can also be used for classification, in which case the most common label amongst the k nearest
neighbours is used

– To avoid ties, we can use an odd value of k for binary classification problems
– For multi-class classification, we can decrease k until there is no longer a tie, reducing to k = 1 in

the worst case

• With increasing values of k, the model becomes less complex; the resulting output becomes smoother,
exhibits more bias but less variance

– For k = 1, this is essentially equivalent to constructing a Voronoi diagram of the input data
– Smaller values of k give more complex decision boundaries but risk overfitting as with any complex

model
* Overfitting makes us more susceptible to outliers

– Rule of thumb: choose k <
√

N
* We can also plot loss as shown in the figure and find the minimum

• k-NN requires a similarity/distance metric to find the nearest neighbours

1

Figure 2: Comparison of training loss (green) and test loss (orange) for different values of k.

– Minkowski distance: dist(x, z) =
(

D∑
i=1
|xi − zi|p

) 1
p

* For p = 1 this is Manhattan distance, for p = 2 this is Euclidean distance, for p =∞ this is is
the max of |xi − zi|

– Mahalanobis distance: dist(x, z) =
√

(x− z)T Σ−1(x− z) where Σ is the covariance matrix of x

• The choice of distance metric plays a key role in performance
– Algorithms exist to choose the metric automatically

• k-NN can be sensitive to the scale of features, so if scale is unimportant, we should normalize each
feature to be zero-mean and unit variance

– Since the distance metric considers each dimension to be equal, the variance in each dimension
can have large effects on the nearest neighbour calculations

– Normalize as xi ←
xi − µi

σi
, i = 1, 2, . . . , D

– µi, σi are the mean and standard deviations of the i-th feature
– Note we should not normalize in a problem where the units/scale of the axes matter

• Each prediction has a runtime complexity of O(ND + N log N) where N is the number of training
samples, D is the number of features (dimensionality)

– This includes both distance calculations and sorting
* Distance calculations can be parallelized

– Lots of research exists on efficient implementation of this algorithm
* Using k-d trees reduces the cost to O(D log N) but only if D ≪ N
* Randomized approximate NN calculations are more appropriate for sparse, high-dimensional

problems
• All training points are required to be stored in order to make predictions, since the model doesn’t learn

– Can use automatic clustering and pick only the center of each cluster
– Dimensionality reduction as a preprocessing step can reduce memory and time usage

The Curse of Dimensionality

• This is the main problem associated with k-NN; as the number of dimensions increases, the number of
training samples we need increases exponentially

• Consider a D-dimensional hypercube [0, 1]D where all training points are distributed uniformly
• Consider a test point x∗; what is the length l of the smallest hypercube within the unit cube that

contains the k-nearest neighbours of x∗?
– Due to the uniform distribution, the proportion of points in the cube is equal to the volume of the

2

cube divided by the volume of the unit cube

– Therefore lD ≈ k

N
which gives l ≈

(
k

N

) 1
D

• The value of l increases very quickly with increasing D; with larger values of D, we have l ≈ 1, so we
will have to search almost the entire space

– But if we are searching the entire space, this means the points might be far apart, so the algorithm
will perform very poorly

• How many training points do we need to keep l small?
– If we want l = 0.01, then we can solve to get N = 100Dk
– This exponential growth in the amount of data needed is one of the main problems with k-NN

• Dimensionality reduction can be very important/helpful for this algorithm

Probabilistic k-NN

• How can we make the algorithm probabilistic?
• For the case of binary classification, we can calculate the distribution of labels in the neighbourhood of

a point
• If the data is parse, we might have zero probabilities for some classes

– To overcome this, we can add pseudo-counts to the data and then normalize
– Add 1 to the count of every category and then renormalise so the distribution still sums to 1

• e.g. binary classification problem with k = 3, we have 2 neighbours in class 1 and 1 neighbour in class
2, which gives us P = [2/3, 1/3]

– To counteract the sparse data problem we will instead have P = [2 + 1, 1 + 1]/5

Summary

k-nearest neighbours algorithm benefits:
• Simple and easy to implement
• Easily parallelized

Drawbacks:
• Choice of simliarity metric has significant impact on performance
• Since the entire training set has to be stored, memory usage can be prohibitive for large datasets
• Sensitive to noise in the labels (outliers/overfitting)
• Susceptible to the curse of dimensionality – high dimensions require exponential amounts of data

3

	Lecture 3, Jan 16, 2024
	k-Nearest Neighbours
	The Curse of Dimensionality
	Probabilistic k-NN

