Lecture 2, Jan 12, 2024

Supervised Learning

o Denote the input (aka features) © = { z1,22,...,2p }T € X CRP
— Extraction of relevant features from data is often necessary (feature engineering)
o Denote the target (aka labels) y € Y
— Regression: Y C R or RE
— Binary classification: Y = {—1,+1}
— Multi-class classification: Y ={1,2,...,K }
* This can be decomposed into a sequence of binary classification problems
* We usually use a one-hot encoding (a K-dimensional target with a 1 in the desired class and
Os elsewhere)
o The probability distribution that the targets and inputs are sampled from is denoted P(X,Y), Pr(X,Y)
or p(x,y) = p(z1,...,24,y) (joint density of features and targets)

o The expectation is denoted E.[g(x)] = /p(a:)g(:z:) dz,Ey[g(y)|x] = /p(y|:1:)g(y) dy

Supervised learning: Given the training dataset
9D) o= {($(1)7y(1))7 (w(2)’y(2))’ s (m(N)’y(N))}
with A ‘
y@ = (@) +e

where f is the function we wish to learn and € is some measurement noise; the goal is to find a function
f: X — Y such that o , ' '
Fl@®) ~ fOy(a®, @)

for both points in D and outside.

e To make this problem tractable, we need additional assumptions
— This is due to the No Free Lunch theorem: no single model is best for all problems!
— We restrict f to a set of possible functions that we refer to the hypothesis class H (model structure
specification)

— We attempt to solve f = argmin L(h) where L: H — R
heM

o If the hypothesis class is parameterized by w, we are essentially solving @ = argmin £(h.,)
w

— Hypothesis classes can be e.g. neural networks, polynomials, etc
D

—e.g Hew =< wo+ Zwixi,w e RP+!
e The loss function is anlej{pectation with respect to the joint distribution of inputs and outputs:
L(h) = E[l(h(x),y)]
— Examples:
* Squared loss: 1(y,y') = (y —9')?
* Absolute loss: I(y,y") = |y — ¢/|

o This is less affected by outliers compared to squared loss
Ly -y ly -y <6
* Huber loss: I(y,y') =< 2 -
§(ly—y'| — 16) otherwise
0 —| <
* e-insensitive loss: I(y,y') = , v -y |__ ¢
ly —y'| — € otherwise

o Useful in regression tasks where some degree in error tolerance is acceptable

— For classification, 3 is the raw output of the classifier (not the output label, so this can include
confidence):

y#y

* . A
Zero-one loss: [(y,y’) = 0 otherwise
o Correctly classified points that are far from the decision boundary (i.e. very confident) are
not penalized
e i.e. this doesn’t care how confident we are
* Hinge loss: I(y,y') = max(0,1 — yy')
o Correctly classified points that are close to the decision boundary are penalized
» The actual loss function we want to minimize is the generalized L(h) = E(g y)~pr(ay)[l(h(x),y)] =
Loen(D)
— Consider the squared error loss; it can be rewritten as Ey[E, [h(z)* + y* — 2h(z)y|z]]
— We can rearrange the inner expectation as (h(z) — E[y|x])? + Var(y|x)
— The first term can be minimized by choosing h(x) = E[y|x]
— The second term does not depend on h(x); it cannot be minimized because it is the intrinsic
variance of the outputs
* This is the Bayes error
— An algorithm that achieves the Bayes error is Bayes optimal; this is not something we can do in
practice (if we had all the information about the distribution, we wouldn’t need to learn in the
first place)
o Let the optimal predictor be h,(x) = E[y|z]; for any dataset we can run our learning algorithm to get
a particular h(x; D)
— Let’s take the expectation of the error over all choices of datasets
— We can rewrite Ep[(h(D) — h.)? 4+ Var(y)] = (Ep[h] — h.)? + Var(h) + Var(y)
So Ep[E,[(h(z; D) — y)?|]] = (Ep[h] — hy)? + Var(h) + Var(y)
—_——— —— ——
bias variance Bayes error
— The loss is now decomposed into 3 terms:
* The bias indicates how the average prediction over all datasets differs from the optimal
predictor
* The variance indicates how sensitive h(x) is to the choice of a particular dataset
* The Bayes error is irreducible noise that is intrinsic to the data generation process
— There is often a tradeoff between bias and variance; lower bias usually result in high variance and
vice-versa
* Often high bias and high variance are used as synonyms for underfitting and overfitting (even
though this technically only applies for squared loss)
» However we can’t actually compute Lgen(h) since we don’t know the underlying distribution; we can

N
1 . .
approximate it using the empirical loss: L(h) ~ N E I(R(2™), yD) = Lemp(h)
i=1

— Minimization of the empirical loss is known as empirical risk minimization
— Convergence in the limit N — oo holds due to the weak law of large numbers
e The empirical loss measures performance only on the training set D; this means that the training error
can be reduced to zero simply by memorizing the entire training dataset
— Such a “memorizer” model is useless for predicting on new data, so it’s undesirable
— To guarantee that the out-of-sample error (i.e. the error for data not in D) is low, we need to
minimize the generalized loss
— But we can’t actually compute the generalized loss, so much of the focus of theoretical research is
on bounding the generalized loss in terms of the empirical loss
o An overly flexible model will memorize irrelevant details of the training set (overfitting) whereas simpler
models don’t have enough degrees of freedom to approximate the underlying function (underfitting)
— Generally if two models fit the data equally well, the simpler model probably generalizes better
e To prevent overfitting, standard practice splits D into training, validation, and testing sets
— This works when we have a large amount of data so we can afford to reduce the training dataset
— The best way to partition is dependent on the problem and size of the dataset available

— The training set is used to fit the model parameters
— The validation set is used to select model complexity (i.e. hyperparameters)
— The testing set is used to estimate the generalization performance
e For smaller datasets, another popular approach is v-fold cross-validation
— D is spit into v equal partitions/folds
— Fori=1,...,v, train models on data in all folds except the i-th, and test on the i-th fold
— For each model the average loss over all v folds is calculated
— Large values of v typically lead to a large increase in computational cost, but this can be parallelized
The choice of v is dictated by the bias-variance tradeoff; typical values are 5 or 10
* Increasing v leads to less bias (since we are averaging over more terms)
* For v = N this is called leave-one-out error estimation
e Other approaches to improving generalization:
— Prior knowledge (feature engineering)
— Getting more data
— Fake more data (e.g. adding noise)
— Ensembles (e.g. bootstrap)
— Bayesian approaches

Ensembles: Bootstrap Aggregation (Bagging)

o Take the dataset and generate M new datasets by sampling IV training examples from D with replacement
e Train the model separately on each of the M datasets to get models h;, t =1,..., M

o Average the predictions of models trained on each of the M datasets: Anootstrap(T) = % 3 hi(x)
| M | M =
o The bias remains unchanged: Ep yYi ; hz] =" ;ED [h:] = Eplh]
o The variance can be shown to be Var(h) = — (1 — p)o? + po? where p is the pairwise correlation

M
coefficient between models and ¢ is the variance

— If we can reduce the correlation between models, i.e. p — 0, we can approach a variance reduction
1
of —

— This is difficult to do but even if we can’t reduce p to 0, bootstrapping generally still reduces the
variance

	Lecture 2, Jan 12, 2024
	Supervised Learning
	Ensembles: Bootstrap Aggregation (Bagging)

