
Lecture 2, Jan 12, 2024
Supervised Learning

• Denote the input (aka features) x = { x1, x2, . . . , xD }T ∈ X ⊆ RD

– Extraction of relevant features from data is often necessary (feature engineering)
• Denote the target (aka labels) y ∈ Y

– Regression: Y ⊆ R or RK

– Binary classification: Y = { −1, +1 }
– Multi-class classification: Y = { 1, 2, . . . , K }

* This can be decomposed into a sequence of binary classification problems
* We usually use a one-hot encoding (a K-dimensional target with a 1 in the desired class and

0s elsewhere)
• The probability distribution that the targets and inputs are sampled from is denoted P(X, Y), Pr(X, Y)

or p(x, y) = p(x1, . . . , xd, y) (joint density of features and targets)
• The expectation is denoted Ex[g(x)] =

�
p(x)g(x) dx,Ey[g(y)|x] =

�
p(y|x)g(y) dy

Definition

Supervised learning: Given the training dataset

D := { (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)) }

with
y(i) = f(x(i)) + ϵ

where f is the function we wish to learn and ϵ is some measurement noise; the goal is to find a function
f̂ : X 7→ Y such that

f̂(x(i)) ≈ f (i)∀(x(i), y(i))

for both points in D and outside.

• To make this problem tractable, we need additional assumptions
– This is due to the No Free Lunch theorem: no single model is best for all problems!
– We restrict f̂ to a set of possible functions that we refer to the hypothesis class H (model structure

specification)
– We attempt to solve f̂ = argmin

h∈H
L(h) where L : H 7→ R

• If the hypothesis class is parameterized by w, we are essentially solving ŵ = argmin
w

L(hw)
– Hypothesis classes can be e.g. neural networks, polynomials, etc

– e.g. Hw :=
{

w0 +
D∑

i=1
wixi, w ∈ RD+1

}
• The loss function is an expectation with respect to the joint distribution of inputs and outputs:

L(h) = E[l(h(x), y)]
– Examples:

* Squared loss: l(y, y′) = (y − y′)2

* Absolute loss: l(y, y′) = |y − y′|
• This is less affected by outliers compared to squared loss

* Huber loss: l(y, y′) =


1
2(y − y′)2 |y − y′| ≤ δ

δ(|y − y′| − 1
2 δ) otherwise

* ϵ-insensitive loss: l(y, y′) =
{

0 |y − y′| ≤ ϵ

|y − y′| − ϵ otherwise
• Useful in regression tasks where some degree in error tolerance is acceptable

1

– For classification, y′ is the raw output of the classifier (not the output label, so this can include
confidence):

* Zero-one loss: l(y, y′) =
{

1 y ̸= y′

0 otherwise
• Correctly classified points that are far from the decision boundary (i.e. very confident) are

not penalized
• i.e. this doesn’t care how confident we are

* Hinge loss: l(y, y′) = max(0, 1 − yy′)
• Correctly classified points that are close to the decision boundary are penalized

• The actual loss function we want to minimize is the generalized L(h) = E(x,y)∼Pr(x,y)[l(h(x), y)] =
Lgen(h)

– Consider the squared error loss; it can be rewritten as Ex[Ey[h(x)2 + y2 − 2h(x)y|x]]
– We can rearrange the inner expectation as (h(x) − E[y|x])2 + Var(y|x)
– The first term can be minimized by choosing h(x) = E[y|x]
– The second term does not depend on h(x); it cannot be minimized because it is the intrinsic

variance of the outputs
* This is the Bayes error

– An algorithm that achieves the Bayes error is Bayes optimal; this is not something we can do in
practice (if we had all the information about the distribution, we wouldn’t need to learn in the
first place)

• Let the optimal predictor be h∗(x) = E[y|x]; for any dataset we can run our learning algorithm to get
a particular h(x; D)

– Let’s take the expectation of the error over all choices of datasets
– We can rewrite ED[(h(D) − h∗)2 + Var(y)] = (ED[h] − h∗)2 + Var(h) + Var(y)
– So ED[Ey[(h(x; D) − y)2|x]] = (ED[h] − h∗)2︸ ︷︷ ︸

bias

+ Var(h)︸ ︷︷ ︸
variance

+ Var(y)︸ ︷︷ ︸
Bayes error

– The loss is now decomposed into 3 terms:
* The bias indicates how the average prediction over all datasets differs from the optimal

predictor
* The variance indicates how sensitive h(x) is to the choice of a particular dataset
* The Bayes error is irreducible noise that is intrinsic to the data generation process

– There is often a tradeoff between bias and variance; lower bias usually result in high variance and
vice-versa

* Often high bias and high variance are used as synonyms for underfitting and overfitting (even
though this technically only applies for squared loss)

• However we can’t actually compute Lgen(h) since we don’t know the underlying distribution; we can

approximate it using the empirical loss: L(h) ≈ 1
N

N∑
i=1

l(h(x(i)), y(i)) = Lemp(h)

– Minimization of the empirical loss is known as empirical risk minimization
– Convergence in the limit N → ∞ holds due to the weak law of large numbers

• The empirical loss measures performance only on the training set D; this means that the training error
can be reduced to zero simply by memorizing the entire training dataset

– Such a “memorizer” model is useless for predicting on new data, so it’s undesirable
– To guarantee that the out-of-sample error (i.e. the error for data not in D) is low, we need to

minimize the generalized loss
– But we can’t actually compute the generalized loss, so much of the focus of theoretical research is

on bounding the generalized loss in terms of the empirical loss
• An overly flexible model will memorize irrelevant details of the training set (overfitting) whereas simpler

models don’t have enough degrees of freedom to approximate the underlying function (underfitting)
– Generally if two models fit the data equally well, the simpler model probably generalizes better

• To prevent overfitting, standard practice splits D into training, validation, and testing sets
– This works when we have a large amount of data so we can afford to reduce the training dataset
– The best way to partition is dependent on the problem and size of the dataset available

2

– The training set is used to fit the model parameters
– The validation set is used to select model complexity (i.e. hyperparameters)
– The testing set is used to estimate the generalization performance

• For smaller datasets, another popular approach is ν-fold cross-validation
– D is spit into ν equal partitions/folds
– For i = 1, . . . , ν, train models on data in all folds except the i-th, and test on the i-th fold
– For each model the average loss over all ν folds is calculated
– Large values of ν typically lead to a large increase in computational cost, but this can be parallelized
– The choice of ν is dictated by the bias-variance tradeoff; typical values are 5 or 10

* Increasing ν leads to less bias (since we are averaging over more terms)
* For ν = N this is called leave-one-out error estimation

• Other approaches to improving generalization:
– Prior knowledge (feature engineering)
– Getting more data
– Fake more data (e.g. adding noise)
– Ensembles (e.g. bootstrap)
– Bayesian approaches

Ensembles: Bootstrap Aggregation (Bagging)
• Take the dataset and generate M new datasets by sampling N training examples from D with replacement
• Train the model separately on each of the M datasets to get models hi, i = 1, . . . , M

• Average the predictions of models trained on each of the M datasets: hbootstrap(x) = 1
M

M∑
i=1

hi(x)

• The bias remains unchanged: ED

[
1

M

M∑
i=1

hi

]
= 1

M

M∑
i=1

ED[hi] = ED[h]

• The variance can be shown to be Var(h) = 1
M

(1 − ρ)σ2 + ρσ2 where ρ is the pairwise correlation
coefficient between models and σ2 is the variance

– If we can reduce the correlation between models, i.e. ρ → 0, we can approach a variance reduction
of 1

M
– This is difficult to do but even if we can’t reduce ρ to 0, bootstrapping generally still reduces the

variance

3

	Lecture 2, Jan 12, 2024
	Supervised Learning
	Ensembles: Bootstrap Aggregation (Bagging)

