Lecture 2, Jan 12, 2024

Supervised Learning

- Denote the input (aka features) $\boldsymbol{x} = \{x_1, x_2, \dots, x_D\}^T \in \mathcal{X} \subseteq \mathbb{R}^D$
 - Extraction of relevant features from data is often necessary (feature engineering)
- Denote the target (aka labels) $y \in \mathcal{Y}$
 - Regression: $\mathcal{Y} \subseteq \mathbb{R}$ or \mathbb{R}^K
 - Binary classification: $\mathcal{Y} = \{-1, +1\}$
 - Multi-class classification: $\mathcal{Y} = \{1, 2, \dots, K\}$
 - * This can be decomposed into a sequence of binary classification problems
 - * We usually use a one-hot encoding (a K-dimensional target with a 1 in the desired class and 0s elsewhere)
- The probability distribution that the targets and inputs are sampled from is denoted $\mathcal{P}(X, Y)$, $\Pr(X, Y)$ or $p(\boldsymbol{x}, y) = p(x_1, \dots, x_d, y)$ (joint density of features and targets)

• The expectation is denoted
$$\mathbb{E}_{\boldsymbol{x}}[g(\boldsymbol{x})] = \int p(\boldsymbol{x})g(\boldsymbol{x}) \, \mathrm{d}x, \mathbb{E}_{y}[g(y)|\boldsymbol{x}] = \int p(y|\boldsymbol{x})g(y) \, \mathrm{d}y$$

Definition

Supervised learning: Given the training dataset

$$\mathcal{D} := \{ (\boldsymbol{x}^{(1)}, y^{(1)}), (\boldsymbol{x}^{(2)}, y^{(2)}), \dots, (\boldsymbol{x}^{(N)}, y^{(N)}) \}$$

with

$$y^{(i)} = f(\boldsymbol{x}^{(i)}) + \epsilon$$

where f is the function we wish to learn and ϵ is some measurement noise; the goal is to find a function $\hat{f}: \mathcal{X} \mapsto \mathcal{Y}$ such that

$$\hat{f}(\boldsymbol{x}^{(i)}) \approx f^{(i)} \forall (\boldsymbol{x}^{(i)}, y^{(i)})$$

for both points in \mathcal{D} and outside.

- To make this problem tractable, we need additional assumptions
 - This is due to the No Free Lunch theorem: no single model is best for all problems!
 - We restrict \hat{f} to a set of possible functions that we refer to the hypothesis class \mathcal{H} (model structure specification)
 - We attempt to solve $\hat{f} = \underset{h \in \mathcal{U}}{\operatorname{argmin}} \mathcal{L}(h)$ where $\mathcal{L} \colon \mathcal{H} \mapsto \mathbb{R}$
- If the hypothesis class is parameterized by \boldsymbol{w} , we are essentially solving $\hat{\boldsymbol{w}} = \operatorname{argmin} \mathcal{L}(h_{\boldsymbol{w}})$
 - Hypothesis classes can be e.g. neural networks, polynomials, etc.

- e.g.
$$\mathcal{H}_{\boldsymbol{w}} := \left\{ w_0 + \sum_{i=1}^{D} w_i x_i, \boldsymbol{w} \in \mathbb{R}^{D+1} \right\}$$

- The loss function is an expectation with respect to the joint distribution of inputs and outputs: $\mathcal{L}(h) = \mathbb{E}[l(h(\boldsymbol{x}), y)]$
 - Examples:
 - * Squared loss: $l(y, y') = (y y')^2$
 - * Absolute loss: l(y, y') = |y y'|
 - This is less affected by outliers compared to squared loss

* Huber loss:
$$l(y, y') = \begin{cases} \frac{1}{2}(y - y')^2 & |y - y'| \le \delta \\ \delta(|y - y'| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$$

* ϵ -insensitive loss: $l(y, y') = \begin{cases} 0 & |y - y'| \le \epsilon \\ |y - y'| - \epsilon & \text{otherwise} \end{cases}$

• Useful in regression tasks where some degree in error tolerance is acceptable

- For classification, y' is the raw output of the classifier (not the output label, so this can include confidence):
 - * Zero-one loss: $l(y, y') = \begin{cases} 1 & y \neq y' \\ 0 & \text{otherwise} \end{cases}$
 - Correctly classified points that are far from the decision boundary (i.e. very confident) are not penalized
 - i.e. this doesn't care how confident we are
 - * Hinge loss: $l(y, y') = \max(0, 1 yy')$
 - Correctly classified points that are close to the decision boundary are penalized

• The actual loss function we want to minimize is the generalized $\mathcal{L}(h) = \mathbb{E}_{(\boldsymbol{x},y)\sim \Pr(\boldsymbol{x},y)}[l(h(\boldsymbol{x}),y)] = \mathcal{L}_{\text{gen}}(h)$

- Consider the squared error loss; it can be rewritten as $\mathbb{E}_{\boldsymbol{x}}[\mathbb{E}_{y}[h(\boldsymbol{x})^{2} + y^{2} 2h(\boldsymbol{x})y|\boldsymbol{x}]]$
- We can rearrange the inner expectation as $(h(\boldsymbol{x}) \mathbb{E}[y|\boldsymbol{x}])^2 + \operatorname{Var}(y|\boldsymbol{x})$
- The first term can be minimized by choosing $h(\boldsymbol{x}) = \mathbb{E}[y|\boldsymbol{x}]$
- The second term does not depend on h(x); it cannot be minimized because it is the intrinsic variance of the outputs
 - * This is the Bayes error
- An algorithm that achieves the Bayes error is *Bayes optimal*; this is not something we can do in practice (if we had all the information about the distribution, we wouldn't need to learn in the first place)
- Let the optimal predictor be $h_*(\boldsymbol{x}) = \mathbb{E}[y|\boldsymbol{x}]$; for any dataset we can run our learning algorithm to get a particular $h(\boldsymbol{x}; \mathcal{D})$
 - Let's take the expectation of the error over all choices of datasets

- We can rewrite
$$\mathbb{E}_{\mathcal{D}}[(h(\mathcal{D}) - h_*)^2 + \operatorname{Var}(y)] = (\mathbb{E}_{\mathcal{D}}[h] - h_*)^2 + \operatorname{Var}(h) + \operatorname{Var}(y)$$

- So $\mathbb{E}_{\mathcal{D}}[\mathbb{E}_y[(h(\boldsymbol{x};\mathcal{D}) - y)^2|\boldsymbol{x}]] = \underbrace{(\mathbb{E}_{\mathcal{D}}[h] - h_*)^2}_{\text{bias}} + \underbrace{\operatorname{Var}(h)}_{\text{variance}} + \underbrace{\operatorname{Var}(y)}_{\text{Bayes error}}$

- The loss is now decomposed into 3 terms:
 - * The *bias* indicates how the average prediction over all datasets differs from the optimal predictor
 - * The variance indicates how sensitive $h(\boldsymbol{x})$ is to the choice of a particular dataset
 - * The Bayes error is irreducible noise that is intrinsic to the data generation process
- There is often a tradeoff between bias and variance; lower bias usually result in high variance and vice-versa
 - * Often high bias and high variance are used as synonyms for underfitting and overfitting (even though this technically only applies for squared loss)
- However we can't actually compute $\mathcal{L}_{\text{gen}}(h)$ since we don't know the underlying distribution; we can

approximate it using the *empirical loss*:
$$\mathcal{L}(h) \approx \frac{1}{N} \sum_{i=1}^{N} l(h(\boldsymbol{x}^{(i)}), y^{(i)}) = \mathcal{L}_{emp}(h)$$

- Minimization of the empirical loss is known as *empirical risk minimization*
- Convergence in the limit $N \to \infty$ holds due to the weak law of large numbers
- The empirical loss measures performance only on the training set \mathcal{D} ; this means that the training error can be reduced to zero simply by memorizing the entire training dataset
 - Such a "memorizer" model is useless for predicting on new data, so it's undesirable
 - To guarantee that the out-of-sample error (i.e. the error for data not in \mathcal{D}) is low, we need to minimize the generalized loss
 - But we can't actually compute the generalized loss, so much of the focus of theoretical research is on bounding the generalized loss in terms of the empirical loss
- An overly flexible model will memorize irrelevant details of the training set (*overfitting*) whereas simpler models don't have enough degrees of freedom to approximate the underlying function (*underfitting*)
- Generally if two models fit the data equally well, the simpler model probably generalizes better • To prevent overfitting, standard practice splits \mathcal{D} into training, validation, and testing sets
 - This works when we have a large amount of data so we can afford to reduce the training dataset
 - The best way to partition is dependent on the problem and size of the dataset available

- The training set is used to fit the model parameters
- The validation set is used to select model complexity (i.e. hyperparameters)
- The testing set is used to estimate the generalization performance
- For smaller datasets, another popular approach is $\nu\text{-}\text{fold}$ cross-validation
 - \mathcal{D} is spit into ν equal partitions/folds
 - For $i = 1, \ldots, \nu$, train models on data in all folds except the *i*-th, and test on the *i*-th fold
 - For each model the average loss over all ν folds is calculated
 - Large values of ν typically lead to a large increase in computational cost, but this can be parallelized
 - The choice of ν is dictated by the bias-variance tradeoff; typical values are 5 or 10
 - * Increasing ν leads to less bias (since we are averaging over more terms)
 - * For $\nu = N$ this is called *leave-one-out error estimation*
- Other approaches to improving generalization:
 - Prior knowledge (feature engineering)
 - Getting more data
 - Fake more data (e.g. adding noise)
 - Ensembles (e.g. bootstrap)
 - Bayesian approaches

Ensembles: Bootstrap Aggregation (Bagging)

- Take the dataset and generate M new datasets by sampling N training examples from \mathcal{D} with replacement
- Train the model separately on each of the M datasets to get models h_i , i = 1, ..., M
- Average the predictions of models trained on each of the *M* datasets: $h_{\text{bootstrap}}(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^{M} h_i(\boldsymbol{x})$
- The bias remains unchanged: $E_{\mathcal{D}}\left[\frac{1}{M}\sum_{i=1}^{M}h_i\right] = \frac{1}{M}\sum_{i=1}^{M}\mathbb{E}_{\mathcal{D}}[h_i] = E_{\mathcal{D}}[h]$
- The variance can be shown to be $\operatorname{Var}(h) = \frac{1}{M}(1-\rho)\sigma^2 + \rho\sigma^2$ where ρ is the pairwise correlation coefficient between models and σ^2 is the variance
 - If we can reduce the correlation between models, i.e. $\rho \to 0$, we can approach a variance reduction of $\frac{1}{M}$
 - This is difficult to do but even if we can't reduce ρ to 0, bootstrapping generally still reduces the variance