
Lecture 16, Apr 9, 2024
Stochastic Variational Inference (SVI)

• Stochastic variational inference is the technique of approximating the true conditional p(z|x) = p(x, z)
p(x)

by a simpler distribution, q(z|θ)
– We want q(z|θ) to be “close to” p(z|x); to do this we need to define “closeness” of distributions
– We can choose q(z|θ) to come from a known family of distributions, e.g. Gaussians

Definition

The Kullback-Leibler (KL) divergence of two distributions p(z) and q(z) is

KL(q ∥ p) = Ez∼q(z)

[
log q(z)

p(z)

]
with the following properties:

• KL(q ∥ p) ≥ 0
• KL(q ∥ p) = 0 ⇐⇒ q = p
• KL(q ∥ p) ̸= KL(p ∥ q)

• KL divergence is always positive and zero when distributions are equal, however it is not symmetric!
– For reverse-KL (aka information projection), we take KL(q ∥ p), which penalizes q having mass

where p has none
* When p is large where q is small, the KL divergence is small
* When p is small where q is large, the KL divergence is large
* This will compress q so it fits to one of the peaks of p

– For forward-KL (aka moment projection), we take KL(p ∥ q), which penalizes q missing mass
where p has some

* When p is large where q is small, the KL divergence is large
* When p is small where q is large, the KL divergence is small
* This will stretch out q to cover all the peaks of p

– The choice of which KL divergence to optimize leads to different fits
* In practice however we normally use reverse KL for computational reasons

Figure 1: Approximating a bimodal distribution by a unimodal distribution; (a) minimizes forward KL, (b)
and (c) minimize reverse KL.

• SVI tries to minimize the KL divergence of p and q
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– KL(q(z|θ) ∥ p(z|x)) = Ez∼q

[
log q(z|θ)

p(z|x)

]
= Ez∼q

[
log

(
q(z|θ) p(x)

p(z, x)

)]
= Ez∼q

[
log

(
q(z|θ)
p(z, x)

])
+ log p(x)

= −L(θ, x) + log p(x)

– L(θ, x) = −Ez∼q

[
log q(z|θ)

p(z, x)

]
is the evidence lower bound (ELBO)

– Since −L(θ, x) + log p(x) ≥ 0 (since KL is positive), the ELBO is a lower bound for log p(x)
– As log p(x) is constant, to minimize the KL divergence we have to maximize the ELBO; therefore

we do not have to compute the normalization, which is infeasible to do
• The ELBO gradient is ∇⃗θ = ∇⃗θ

�
q(z|θ) log p(x, z)

q(z|θ) dz, which must be estimated since we cannot

compute this high-dimension integral
– The score function (aka REINFORCE) gradient estimator

* ∇⃗θL(θ, x) = Ez∼q

[
∇⃗θ log q(z|θ) log p(x, z)

q(z|θ)

]
* Using Monte Carlo, ∇⃗θL(θ, x) ≈ 1

B

B∑
i=1

∇⃗θ log q(z(i)|θ) log p(x, z(i))
q(z(i)|θ

• B is the number of samples
• This is an unbiased estimator and easy to compute

* In practice, this has higher variance than the pathwise gradient estimator
* Use in specific domains such as reinforcement learning

– The pathwise (aka reparametrization) gradient estimator factors out all the randomness of the
distribution into a parameterless fixed source of noise, p(ε)

* Find T (ε, θ) such that for ε ∼ p(ε), then z = T (ε, θ) =⇒ z ∼ q(z|θ)
• e.g. for a Gaussian, θ = { µ, σ }, let ε ∼ N (ε|0, 1) and T (ε, θ) = σε+µ, then z ∼ N (z|µ, σ)

* Using the above, ∇⃗θ(θ, x) = Eε∼p(ε)

[
∇⃗θ log p(x, T (ε, θ))

q(T (ε, θ)|θ)

]
* This can then be estimated using Monte Carlo

• The main drawback of SVI is the challenge of determining how good the approximation is after the
optimization terminates

Monte Carlo and Importance Sampling
• So far we’ve examined methods of estimating the full distribution p(x), but sometimes we’re only

interested in the expectation of some function ϕ(x) under the distribution, i.e. I = Ex∼p(x) [ϕ(x)]

• The Monte Carlo approximation is given by I = Ex∼p(x) [ϕ(x)] ≈ Î = 1
R

R∑
i=1

ϕ(x(i))

– This is unbiased, with a standard deviation proportional to 1√
R

, independent of the dimension of
x

• If we only need the expectation, we only need to be able to sample from the distribution, and apply
Monte Carlo to find the expectation

– However, sampling is hard because we typically only have the unnormalized distribution, p̃(x) =
Zp(x); even if we did have the full distribution, sampling from a high-dimension distribution is
hard

• Importance sampling is a method for approximating the expectation when we only have the unnormalized
distribution

– A notable example is the particle filter for state estimation in robotics
• Let q(x) be the sampler density, a simpler density function that we can easily sample from
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– I =
�

p(x)ϕ(x) dx

=
�

ϕ(x)p(x)
q(x)q(x) dx

=
� ϕ(x)p(x)

q(x) q(x) dx� p(x)
q(x) q(x) dx

=
� ϕ(x) 1

Z p̃(x)
q(x) q(x) dx

� 1
Z p̃(x)
q(x) q(x) dx

=
� ϕ(x)p(x)

q(x) q(x) dx� p̃(x)
q(x) q(x) dx

=
Ex∼q(x)

[
ϕ(x)p(x)

q(x)

]
Ex∼q(x)

[
p̃(x)
q(x)

]
– Now we can use Monte Carlo to approximate the expectations

– Î =
1
R

∑R
r=1

ϕ(x(r))p̃(x(r))
q(x(r))

1
R

∑R
r=1

p̃(x(r))
q(x(r))

=
∑

r wrϕ(x(r))∑
r wr

– Each wr = p̃(x(r))
q(x(r))

is referred to as the importance weight

* Intuitively, if at a point p(x(r)) > q(x(r)), then sampling from q will under-represent this
point; therefore the points are weighted more in the sum, since wr will be larger

* Conversely p(x(r)) < q(x(r)) means q over-represents the point, so in this case wr will be
small and less weight is applied to it

* When p(x(r)) = q(x(r)) we can show that Î applies no reweighing to samples
• The sampler density should have heavy tails (e.g. a Cauchy distribution instead of a Gaussian), since

we need to compensate for the difference between distribution
• If the sampler is chosen improperly, the variance of the result can be extremely high
• In high dimensions, if the sampler distribution is not a near-perfect approximation of the target, then

the entire sum will likely be dominated by a few samples with a huge weight, leading to a very bad
estimate
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