Lecture 16, Apr 9, 2024

Stochastic Variational Inference (SVI)
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o Stochastic variational inference is the technique of approximating the true conditional p(z|x) = il ( ))
p(x
by a simpler distribution, ¢(z|0)

— We want ¢(z|0) to be “close to” p(z|x); to do this we need to define “closeness” of distributions
— We can choose ¢(z]0) to come from a known family of distributions, e.g. Gaussians

The Kullback-Leibler (KL) divergence of two distributions p(z) and ¢(z) is

KL(q H p) = IEz~q(z) [lOg %}

with the following properties:
« KL(q||p)=0
« KL(q|p)=0 < q=p
« KL(q| p)#KL(p| q)

o KL divergence is always positive and zero when distributions are equal, however it is not symmetric!
— For reverse-KL (aka information projection), we take K L(q || p), which penalizes ¢ having mass
where p has none
* When p is large where ¢ is small, the KL divergence is small
* When p is small where ¢ is large, the KL divergence is large
* This will compress ¢ so it fits to one of the peaks of p
— For forward-KL (aka moment projection), we take K L(p || q), which penalizes ¢ missing mass
where p has some
* When p is large where ¢ is small, the KL divergence is large
* When p is small where ¢ is large, the KL divergence is small
* This will stretch out ¢ to cover all the peaks of p
— The choice of which KL divergence to optimize leads to different fits
* In practice however we normally use reverse KL for computational reasons
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Figure 1: Approximating a bimodal distribution by a unimodal distribution; (a) minimizes forward KL, (b)
and (c) minimize reverse KL.

e SVI tries to minimize the KL divergence of p and ¢
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- L(0,x) = -E,, {log ((z| ))} is the evidence lower bound (ELBO)
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— Since —L£(0,x) + log p(x) > 0 (since KL is positive), the ELBO is a lower bound for log p(x)

— As log p() is constant, to minimize the KL divergence we have to maximize the ELBO; therefore

we do not have to compute the normalization, which is infeasible to do
« The ELBO gradient is Vo = 69/ (z|0)log p(@ z) dz, which must be estimated since we cannot

q(=16)
compute this high-dimension integral
— The score function (aka REINFORCE) gradient estimator

* %L(e,m) E.q [Vg log q(z]0) log ((wlez))}

(1)
* Using Monte Carlo, V9£(0 x) Zvo log Q(Z( )|9) log ((Z)le)
=1

e B is the number of samples
e This is an unbiased estimator and easy to compute
* In practice, this has higher variance than the pathwise gradient estimator
* Use in specific domains such as reinforcement learning
— The pathwise (aka reparametrization) gradient estimator factors out all the randomness of the
distribution into a parameterless fixed source of noise, p(e)
* Find T'(e, 0) such that for € ~ p(e), then z =T'(e,0) = z ~ ¢(z|0)
o e.g. for a Gaussian, @ = { p, 0 }, let € ~ N(/|0,1) and T'(¢, 0) = oe+ p, then z ~ N (z|u, o)
« 11 - _ 5 . px,T(e,0))
Using the above, Vg (8, x) = Ecp(e) |:V9 log «(T(=.0)0)
* This can then be estimated using Monte Carlo
e The main drawback of SVI is the challenge of determining how good the approximation is after the
optimization terminates

Monte Carlo and Importance Sampling

o So far we’ve examined methods of estimating the full distribution p(x), but sometimes we're only

interested in the expectation of some function ¢(x) under the distribution, i.e. I = Egp ) [¢(2)]
R

~ 1 )
+ The Monte Carlo approximation is given by I = Eq p@) [0(x)] = I = Z o(x)
i=1

— This is unbiased, with a standard deviation proportional to independent of the dimension of
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e If we only need the expectation, we only need to be able to sample from the distribution, and apply
Monte Carlo to find the expectation
— However, sampling is hard because we typically only have the unnormalized distribution, p(x) =
Zp(x); even if we did have the full distribution, sampling from a high-dimension distribution is
hard
e Importance sampling is a method for approximating the expectation when we only have the unnormalized
distribution
— A notable example is the particle filter for state estimation in robotics
o Let q(x) be the sampler density, a simpler density function that we can easily sample from
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— Now we can use Monte Carlo to approximate the expectations
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is referred to as the importance weight
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— Each w, = p™)
q(x())

* Intuitively, if at a point p(a:(r)) > q(w(r)), then sampling from ¢ will under-represent this
point; therefore the points are weighted more in the sum, since w, will be larger
q(ac(’")) means ¢ over-represents the point, so in this case w, will be
small and less weight is applied to it
* When p(z™) = ¢(x™) we can show that I applies no reweighing to samples
o The sampler density should have heavy tails (e.g. a Cauchy distribution instead of a Gaussian), since
we need to compensate for the difference between distribution
e If the sampler is chosen improperly, the variance of the result can be extremely high
e In high dimensions, if the sampler distribution is not a near-perfect approximation of the target, then
the entire sum will likely be dominated by a few samples with a huge weight, leading to a very bad
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