
Lecture 15, Apr 5, 2024
Gaussian Processes – Regression in Function-Space

• Gaussian processes are a kernelized version of Bayesian linear regression
– Allows scaling to infinitely many basis functions
– Priors over functions instead of parameters, which is a lot more powerful (e.g. allows specifying

smoothness, periodicity, etc)

• We want to compute the posterior predictive distribution p(y′|y) = p(y′, y)�
p(y′, y) dy′

– y is the data we have, and y′ is the prediction we make about the future samples
• Derivation:

– Since we assume both Gaussian weights and noise, the distribution of targets will also be Gaussian

– y = wT ϕ(x) + ε =⇒ p
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* x′ is the test point and y′ is our prediction for it
* Note wN (0, α1) is our prior (regularization) and ε ∼ N (0, σ2) is the noise

– Let the Gram matrix KX,X = ΦΦT ∈ RN×N , where entry ij is αϕT (x(i))ϕ(x(j)) = k(x(i), x(j)),
where k : X × X 7→ R is the kernel

– Let kX,x′ =
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– Then p
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* The Gram matrix is a covariance matrix
* Here we have implicitly marginalized out w

– Therefore p(y′|y) = N (µp, σ2
p) where:

* µp = kx′,X(KX,X + σ21)−1y
* σ2

p = kx′,x′ − kx′,X(KX,X + σ21)−1kX,x′ + σ2

* We have written the posterior predictive distribution entirely in terms of the kernel
* Note this is equivalent to what we derived for a GLM, with squared error, l2 regularization

and λ = σ2

α
– This is known as Gaussian process regression

• We have developed a kernelized version of Gaussian linear regression, similar to kernelized GLMs
– The kernels we can use for this are the same as the ones for kernelized GLMs

• Compare the time and memory requirements:
– With normal Bayesian linear regression, i.e. GP regression in weight-space, we need an expensive

matrix inversion for ΦT Φ and also to store these matrices
* O(NM2 + M3) time
* O(NM + M2) memory

– With the kernelized , i.e. GP regression in function-space, the cost is independent of M
* O(N3) time
* O(N2) memory

– Similar to kernelized GLMs, using GP in function space is much more efficient when we have
M ≫ N

• Kernel selection is very important; changing the kernel drastically impacts the model, since it changes
our assumptions about what possible models look like, including smoothness, periodicity, etc

– As always kernels need to be positive definite
• We can compose new kernels from multiple kernels, by adding them together, multiplying them together,

or by composing with a function as k(x, y) = k1(f(x), f(y)); all these will preserve positive definiteness
– e.g. if the data has both long-term trends and short-term trends (e.g. Mauna Loa dataset), we can

add together a kernel with a large lengthscale and a kernel with a small one, to produce a better
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Figure 1: Visualization of some kernels in 1 dimension.

Figure 2: Visualization of the priors encoded by the kernels in the previous figure. These are different
possibilities of f̂ sampled from the prior.
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kernel overall

Figure 3: Examples of predictions using only a large lengthscale kernel and a small lengthscale one.

Figure 4: Predictions using the sum of both kernels.

Figure 5: Predictions using the sum of two kernels with different lengthscales, plus a periodic kernel, and a
degree 2 polyomial kernel.

• Kernels also have hyperparameters, e.g. in Gaussian kernel k(x, y) = σ2e− (x−y)2
2θ the output variance σ2

and lengthscale l = 1/θ are important hyperparameters
• These hyperparameters can be selected through a number of means, like with Bayesian linear regression,

e.g. prior knowledge, cross validation, full Bayesian inference and type-II maximum likelihood
– Recall that in type-II maximum likelihood we try to maximize p(y|X) as a function of hyperpa-

rameters
– log p(y|X) = −N

2 log α − N

2 log(σ2) − 1
2σ2 yT y + 1

2µT Σ−1µ + 1
2 log det(Σ) − N

2 log(2π)
* Used for weight space

– log(y|X) = −N

2 log(2π) − 1
2 log det(KX,X + σ21) − 1

2yT (KX,X + σ21)−1y
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* Used for function space

Approximate Bayesian Methods
• Generally, given a set of observed evidence, XE and a set of unobserved variables that we want to infer,

XF , a general class of problems is computing p(XF |XE) = p(XE , XF )
p(XE)

– Often we know the joint distribution, but not the conditional distribution, because finding p(XE)
is difficult or impractical

– This is is a generalization of Bayesian inference estimation of p(w|D) = p(D|w)p(w)
p(D)

* In this case we know p(D|w) from our model setup + noise, and p(w) from our prior on the
parameters

• Since we often have p(XE , XF ), we know p(XF |XE) up to a normalization constant, which is intractable
to compute due to having to integrate p(XE) =

�
p(XE , XF ) dXF

• We can try to estimate the p(XE) integral through quadrature numerical integration, but the number of
points we need to sample increases exponentially with the dimensionality of XF , making this impractical
in most cases

• The Laplace approximation finds a Gaussian approximation of the posterior, based on a second-order
Taylor approximation at the MAP

– Let XF = z, then p(z|XE) = 1
Z

p(XE , z) = 1
Z

p̃(z)
– Consider the MAP, ẑMAP = argmax

z
log p̃(z); this must be a critical point of log p̃(z), so the

gradient is zero
– The second-order Taylor expansion is then log p(z|XE) ≈ log p̃(ẑMAP)− 1

2(z−ẑMAP)T A(z−ẑMAP)

* A = −∇⃗2 log p̃(z) is the (negative) Hessian, evaluated at ẑMAP
• Note we define A with a negative sign, since the Hessian at a maximum is negative-definite,

but we need a positive-definite matrix later to be the covariance
* The first-order term is zero here because the gradient is zero at a critical point

– Exponentiate the approximation, then p(z|XE) ≈ N (z|ẑMAP, A−1)
• The Laplace approximation is often used due to its simplicity; we only need to estimate the MAP, then

approximate and invert the Hessian at the MAP
– However, it often does a poor job
– The main limitation is that it only approximates the posterior around the MAP and doesn’t

account for global properties
• We will introduce another method, based on Monte Carlo expectation approximation

– Ex∼p(x)[f(x)] ≈ 1
M

M∑
i=1

f(x(i)) is the Monte Carlo approximation for the expectation of f(x), given

a distribution p(x), for M samples chosen independently from p(x)
– It is an unbiased estimator and has variance proportional to 1√

M
– Important, the accuracy of the Monte Carlo estimate is independent of the dimensionality of x,

making it much more useful in high-dimension contexts
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