Lecture 15, Apr 5, 2024

Gaussian Processes — Regression in Function-Space

o Gaussian processes are a kernelized version of Bayesian linear regression
— Allows scaling to infinitely many basis functions
— Priors over functions instead of parameters, which is a lot more powerful (e.g. allows specifying
smoothness, periodicity, etc)

/
o We want to compute the posterior predictive distribution p(y'|y) = %
[y y)dy
— g is the data we have, and 7/ is the prediction we make about the future samples
e Derivation:

— Since we assume both Gaussian weights and noise, the distribution of targets will also be Gaussian

e e (1) = (0.0[7 8 fow) @] )

_ o’ (@)p(x) o' ()P |
—N(O,a[ Do) 53T }—Fa 1)
* ' is the test point and 3’ is our prediction for it
* Note wN (0, 1) is our prior (regularization) and & ~ N(0,02) is the noise
— Let the Gram matrix Kx x = ®®7 € RV*N | where entry ij is a¢”? (D) p(x?)) = k(x®, ),
where k: X x X — R is the kernel
~ Let kx o = [k(zW,2') k=P, 2) ... k@™, z)]
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* The Gram matrix is a covariance matrix
* Here we have implicitly marginalized out w
— Therefore p(y'|y) = N (up, 05) where:
* pp = ke x (Kx x +0°1) "1y
* 0'5 = kw/,w/ - kw’,X(KX,X + 0'21)71kX,w’ + o?
* We have written the posterior predictive distribution entirely in terms of the kernel

* Note this is equivalent to what we derived for a GLM, with squared error, Iy regularization

o2

and A = —

— This is knownoés Gaussian process regression
e We have developed a kernelized version of Gaussian linear regression, similar to kernelized GLMs
— The kernels we can use for this are the same as the ones for kernelized GLMs
e Compare the time and memory requirements:
— With normal Bayesian linear regression, i.e. GP regression in weight-space, we need an expensive
matrix inversion for ®7'® and also to store these matrices
* O(NM? + M?) time
* O(NM + M?) memory
— With the kernelized , i.e. GP regression in function-space, the cost is independent of M
* O(N?) time
* O(N?) memory
— Similar to kernelized GLMs, using GP in function space is much more efficient when we have
M > N

T

o Kernel selection is very important; changing the kernel drastically impacts the model, since it changes
our assumptions about what possible models look like, including smoothness, periodicity, etc
— As always kernels need to be positive definite
e We can compose new kernels from multiple kernels, by adding them together, multiplying them together,
or by composing with a function as k(z,y) = k1(f(x), f(y)); all these will preserve positive definiteness
— e.g. if the data has both long-term trends and short-term trends (e.g. Mauna Loa dataset), we can
add together a kernel with a large lengthscale and a kernel with a small one, to produce a better
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Figure 1: Visualization of some kernels in 1 dimension.
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Figure 2: Visualization of the priors encoded by the kernels in the previous figure. These are different
possibilities of f sampled from the prior.
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Figure 3: Examples of predictions using only a large lengthscale kernel and a small lengthscale one.
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Figure 4: Predictions using the sum of both kernels.
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Figure 5: Predictions using the sum of two kernels with different lengthscales, plus a periodic kernel, and a
degree 2 polyomial kernel.
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o Kernels also have hyperparameters, e.g. in Gaussian kernel k(z,y) = aze_T) the output variance o>
and lengthscale | = 1/6 are important hyperparameters
e These hyperparameters can be selected through a number of means, like with Bayesian linear regression,
e.g. prior knowledge, cross validation, full Bayesian inference and type-II maximum likelihood
— Recall that in type-II maximum likelihood we try to maximize p(y|X) as a function of hyperpa-
rameters

N N
— logp(y|X) = —?loga - 51082(02)
* Used for weight space
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* Used for function space

Approximate Bayesian Methods

e Generally, given a set of observed evidence, X and a set of unobserved variables that we want to infer,
p(X5, XF)
p(XE)
— Often we know the joint distribution, but not the conditional distribution, because finding p(Xg)
is difficult or impractical

X, a general class of problems is computing p(Xp|Xg) =

D]w)p(w
— This is is a generalization of Bayesian inference estimation of p(w|D) = p(|(1))p;()
p
* In this case we know p(D|w) from our model setup + noise, and p(w) from our prior on the

parameters
« Since we often have p(Xg, Xr), we know p(Xr|Xg) up to a normalization constant, which is intractable

to compute due to having to integrate p(Xg) = | p(Xg, Xr)dXp

o We can try to estimate the p(Xg) integral through quadrature numerical integration, but the number of
points we need to sample increases exponentially with the dimensionality of X r, making this impractical
in most cases

e The Laplace approximation finds a Gaussian approximation of the posterior, based on a second-order
Taylor approximation at the MAP

— Let Xp = z, then p(z|Xg) = %p(XE,z) = %p(z)

— Consider the MAP, 2yap = argmaxlogp(z); this must be a critical point of logp(z), so the
gradient is zero :

— The second-order Taylor expansion is then log p(z| Xg) ~ log p(2map) — %(z—%MAp)TA(z—,%MAp)

* A =—V?logj(z) is the (negative) Hessian, evaluated at Zyap
o Note we define A with a negative sign, since the Hessian at a maximum is negative-definite,
but we need a positive-definite matrix later to be the covariance
* The first-order term is zero here because the gradient is zero at a critical point
— Exponentiate the approximation, then p(z|Xg) ~ N (z|2map, A1)
o The Laplace approximation is often used due to its simplicity; we only need to estimate the MAP, then
approximate and invert the Hessian at the MAP
— However, it often does a poor job
— The main limitation is that it only approximates the posterior around the MAP and doesn’t
account for global properties
e We will introduce another method, based on Monte Carlo expectation approximation

M
1 .
= Eppa) [f(2)] = i E f(x™) is the Monte Carlo approximation for the expectation of f(z), given
i=1

a distribution p(x), for M samples chosen independently from p(z)
— It is an unbiased estimator and has variance proportional to —

— Important, the accuracy of the Monte Carlo estimate is independent of the dimensionality of x,
making it much more useful in high-dimension contexts
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