Lecture 14, Mar 26, 2024

Bayesian Estimation

e Bayesian approaches allow us to quantify the uncertainty in predictions, whereas MLE and MAP are
frequentist approaches that only give a point estimate
o Additional benefits include:
— Allows us to use a prior toe encode our beliefs about the parameters before seeing any data
— Prevents overfitting so long as the prior and likelihood are accurate
— Allows us to construct models in the low-data regime
o Frequentist methods assume that there exists a true, fixed parameter value 6*
— Error bars on the estimate of 6 are obtained by considering the distribution of all possible datasets
e In the Bayesian approach, we have a single observational dataset, and we estimate the posterior
distribution of the parameters given the data
— Error bars are obtained from this posterior distribution
e Bayesian methods use two things:
~ The likelihood p(y™, ..., 5™|0) = p(D|6)
* This is not a probability distribution but rather a function of the parameters 6
— The prior p(6)
* Encodes prior beliefs about the parameters before looking at the data
* Often we use a form that makes the computation easy rather than some rigorous statistical
assumption
o We are interested in computing two distributions:
— The posterior distribution p(0|D)
* This encodes our beliefs about the parameters after observing the data
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— The posterior predictive distribution p(y'|D)
* This is the distribution of a future observation given the data
* Used to estimate what unseen values in the data are

* Marginalize out 6 to get p(y'|D) = /p(y’|9)p(0|D) de
o Process:

1. Write down the likelihood p(D|6)
2. Write down the prior p(6)

* Comes from Bayes rule, p(6|D) =

p(D]0)p(9)
p(D)
4. Compute the posterior predictive distribution p(y’|D)
e The two last steps are often challenging to do
e Example: suppose we have a coin where 6 is the probability of heads; we have a dataset of N flips
— Likelihood: Bernoulli p(D|#) = V% (1 — §)NT
Lla+b) pa1)(q _ gy
arp’ 7

* This distribution encodes possible beliefs about the prior

3. Compute the posterior p(6|D) =

Prior: beta prior p(6,a,b) =
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* This is another beta distribution with parameters a + Ny and b+ Np
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e In the above example we chose the beta prior because it has the same form as the Bernoulli distribution
— This is known as a conjugate prior, which makes the computation convenient
— Any distribution in the exponential family has a corresponding conjugate prior
— e.g. for Bernoulli we have beta; for Gaussian we have Gaussian again

e As we increase the amount of data, we rely on the prior less and the distribution approaches the MLE




estimate
e If the prior and likelihood assumptions are incorrect, the Bayesian approach can still overfit
e In practice, it also involves evaluating a high-dimensional integral which is not practical
— Bayesian linear regression can allow us to approximate these integrals

Bayesian Linear Regression

e Assume a dataset D where each output is assumed to be IID from a normal distribution with mean
w? ¢(x) and variance o
— This led us to the normal GLM with MLE, and the regularized GLM with MAP

N
« Likelihood: logp(y|lw, X,0?) = ZlogN(y(i)|wT¢(as(i)),02)
i=1
o Prior: p(w|a) = N (w]0,al)
— This is the conjugate prior
« Posterior: logp(w|D) = log p(w) + log p(D|w) + const
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— Exponentiate this and we get a Gaussian, so p(w|D, o, ) = N (w|u, X)
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o Posterior predictive: p(y'|z’, D) = /p(y’|w','w)p(w|D) dw
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— The last line is obtained because we have a convolution of two Gaussians
e Bayesian linear regression considers all possible explanations of how the data was generated, and
predicts using all possible regression weights, weighted by the posterior probability

e Between each row of the figure, we add data points; the new posterior is obtained by taking the prior
and multiplying by the likelihood, and the data space shows lines indicating the distribution of possible
parameters

e We need to choose a good o and ¢ to get a good result
— If we know about the noise (e.g. via a sensor model), we can use this to specify o2
— If we previously estimated the posterior and we would like to update it (i.e. sequential inference),
we can use the previous posterior as the prior, like in the first figure
— If we don’t have enough information for either, we could specify priors over a and ¢
* This is the full Bayesian method
* No analytic solution exists for the inference
o In type-II inference, we numerically optimize o and ¢ to maximize logp(y| X, a, o), known as the
evidence (i.e. the likelihood of the observations), to find good values for « and o
— Computationally cheap
— Only two parameters, so not as prone to overfitting
— Tends to underestimate the uncertainty (which is not good for engineering), because we’re using
point estimates for the parameters o and o>
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Figure 1: Illustration of the interpretation of Bayesian linear regression.

Figure 2: Illustration of Bayesian linear regression with a GLM with radial basis functions.
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