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Bayesian Estimation

• Bayesian approaches allow us to quantify the uncertainty in predictions, whereas MLE and MAP are
frequentist approaches that only give a point estimate

• Additional benefits include:
– Allows us to use a prior toe encode our beliefs about the parameters before seeing any data
– Prevents overfitting so long as the prior and likelihood are accurate
– Allows us to construct models in the low-data regime

• Frequentist methods assume that there exists a true, fixed parameter value θ∗

– Error bars on the estimate of θ are obtained by considering the distribution of all possible datasets
• In the Bayesian approach, we have a single observational dataset, and we estimate the posterior

distribution of the parameters given the data
– Error bars are obtained from this posterior distribution

• Bayesian methods use two things:
– The likelihood p(y(1), . . . , y(N)|θ) = p(D|θ)

* This is not a probability distribution but rather a function of the parameters θ
– The prior p(θ)

* Encodes prior beliefs about the parameters before looking at the data
* Often we use a form that makes the computation easy rather than some rigorous statistical

assumption
• We are interested in computing two distributions:

– The posterior distribution p(θ|D)
* This encodes our beliefs about the parameters after observing the data
* Comes from Bayes rule, p(θ|D) = p(D|θ)p(θ)�

p(D|θ′)p(θ′) dθ′

– The posterior predictive distribution p(y′|D)
* This is the distribution of a future observation given the data
* Used to estimate what unseen values in the data are
* Marginalize out θ to get p(y′|D) =

�
p(y′|θ)p(θ|D) dθ

• Process:
1. Write down the likelihood p(D|θ)
2. Write down the prior p(θ)

3. Compute the posterior p(θ|D) = p(D|θ)p(θ)
p(D)

4. Compute the posterior predictive distribution p(y′|D)
• The two last steps are often challenging to do
• Example: suppose we have a coin where θ is the probability of heads; we have a dataset of N flips

– Likelihood: Bernoulli p(D|θ) = θNH (1 − θ)NT

– Prior: beta prior p(θ, a, b) = Γ(a + b)
Γ(a)Γ(b)θ(a−1)(1 − θ)(b−1)

* This distribution encodes possible beliefs about the prior
* Expectation at a

a + b
– Posterior p(θ|D) ∝ θa+NH −1(1 − θ)b+NT −1

* This is another beta distribution with parameters a + NH and b + NT

– Posterior predictive distribution p(y′ = H|D) =
�

p(y′ = H|θ)p(θ|D) dθ = NH + a

NH + NT + a + b
• In the above example we chose the beta prior because it has the same form as the Bernoulli distribution

– This is known as a conjugate prior, which makes the computation convenient
– Any distribution in the exponential family has a corresponding conjugate prior
– e.g. for Bernoulli we have beta; for Gaussian we have Gaussian again

• As we increase the amount of data, we rely on the prior less and the distribution approaches the MLE
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estimate
• If the prior and likelihood assumptions are incorrect, the Bayesian approach can still overfit
• In practice, it also involves evaluating a high-dimensional integral which is not practical

– Bayesian linear regression can allow us to approximate these integrals

Bayesian Linear Regression

• Assume a dataset D where each output is assumed to be IID from a normal distribution with mean
wT ϕ(x) and variance σ2

– This led us to the normal GLM with MLE, and the regularized GLM with MAP

• Likelihood: log p(y|w, X, σ2) =
N∑

i=1
log N (y(i)|wT ϕ(x(i)), σ2)

• Prior: p(w|α) = N (w|0, α1)
– This is the conjugate prior

• Posterior: log p(w|D) = log p(w) + log p(D|w) + const

= − 1
2α

wT w − 1
2σ2 (wT ΦT Φw − 2wT ΦT y + yT y)

= −1
2(w − µ)T Σ−1(w − µ) + const

– Exponentiate this and we get a Gaussian, so p(w|D, α, σ) = N (w|µ, Σ)
– µ = 1

σ2 ΣϕT y

– Σ1 = 1
σ2 ΦT Φ + 1

α
1

• Since the posterior is a Gaussian, its mean is the MAP estimate µ =
(

ΦT Φ + σ2

α
1

)−1

ΦT y

• Posterior predictive: p(y′|x′, D) =
�

p(y′|x′, w)p(w|D) dw

=
�

N (y′|wT ϕ(x′), σ2)(w|µ, Σ) dw

= N (y′|µT ϕ(x′), ϕ(x′)T Σϕ(x′) + σ2)
– The last line is obtained because we have a convolution of two Gaussians

• Bayesian linear regression considers all possible explanations of how the data was generated, and
predicts using all possible regression weights, weighted by the posterior probability

• Between each row of the figure, we add data points; the new posterior is obtained by taking the prior
and multiplying by the likelihood, and the data space shows lines indicating the distribution of possible
parameters

• We need to choose a good α and σ to get a good result
– If we know about the noise (e.g. via a sensor model), we can use this to specify σ2

– If we previously estimated the posterior and we would like to update it (i.e. sequential inference),
we can use the previous posterior as the prior, like in the first figure

– If we don’t have enough information for either, we could specify priors over α and σ2

* This is the full Bayesian method
* No analytic solution exists for the inference

• In type-II inference, we numerically optimize α and σ2 to maximize log p(y|X, α, σ2), known as the
evidence (i.e. the likelihood of the observations), to find good values for α and σ2

– Computationally cheap
– Only two parameters, so not as prone to overfitting
– Tends to underestimate the uncertainty (which is not good for engineering), because we’re using

point estimates for the parameters α and σ2
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Figure 1: Illustration of the interpretation of Bayesian linear regression.

Figure 2: Illustration of Bayesian linear regression with a GLM with radial basis functions.
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