
Lecture 13, Mar 15, 2024
Neural Networks – Training Considerations
Weight Initialization

• Deep neural networks suffer from the problem of vanishing or exploding gradients
– Since we have to multiply together a large number of gradients, if the gradients are each individually

small, the overall gradient goes to zero; if the gradients are individually large, the overall gradient
goes to infinity

– If our gradient is too small, then we might be moving very slowly or detect false convergence
– If the gradients are too large, we suffer from instability

• Initializing the weights to the same value, e.g. zero, is not a good choice
– With all weights being zero, each neuron receives an input of zero, so the gradients are the same

and the network cannot learn complex patterns
– We also have the symmetry issue; if the network architecture and weights are symmetric, we get

symmetric gradients and the entire network just becomes symmetric
• What about small random numbers?

– Since the weights are small, all activations will tend to zero, and all gradients will become the same
• What about large random numbers?

– The opposite happens – the activations saturate and all gradients become zero (assuming sigmoid
or tanh activation)

• If our input data is normalized to zero-mean and unit variance, we can expect that we’d also want our
weights to be distributed the same

• Xavier initialization scales the weights by the square root of the number of inputs
– Derived by looking at what weights will avoid vanishing or exploding gradients
– The distribution is a unit Gaussian scaled down by the root of the number of inputs
– This is the default for PyTorch, Tensorflow, etc

• For other activation functions, we have other strategies
– For ReLU, we instead divide by the root of half the number of inputs

• Symmetries in the weight space lead to equivalent networks with different sets of weights (model
identifiability problem)

– Having different ways to connect weights that lead to the same result will give many local optima
– However, if we overparameterize our network, it will turn the minima into saddle points (at the

cost of overfitting)

Overfitting Prevention
• Regularization can be used to prevent overfitting in neural networks as well

– Penalize the magnitude of the weights
– Using l2 regularization is commonly called weight decay
– l1 regularization introduces sparsity

• Early stopping is the idea of stopping training after a certain number of iterations, instead of checking
for convergence in the gradient

– The number of iterations is treated as a hyperparameter
– Once the validation loss starts increasing, we stop, backtrack a bit till the point before it started

increasing, and take that as the final model
• Another method is to use more data

– If it’s not possible to collect more data, we can use data augmentation techniques, such as rotation,
blurring, cropping etc, to generate new training samples that the model should still recognize

– We can also intentionally add adversarial examples by adding noise
• Bagging/bootstrap aggregation can also be used to reduce the variance in the estimates
• Dropout is another technique where some hidden units are “dropped” during training with probability

1 − π, where π is a hyperparameter)
– During testing/inference, the weights are scaled back up by π

1



– Typical values are π ∈ [0.5, 0.8]
– Statistically, this is an approximate Bayesian inference scheme

• Weight sharing is a technique that uses prior knowledge to identify weights that should be close to each
other, and force the weights to be the same or penalize their difference

– CNNs are an example of this, since convolutions share the same weights in the kernels

Convolutional Neural Networks (CNNs)

• In a fully-connected network each layer is fully connected to the one before it – all neurons are connected
to all the neuron in the previous layer

– In such a network, if we have m neurons in the previous layer and n in the current, we’d need nm
weights

• In convolutional neural networks, we convolve a filter with the image
– This keeps the spacial structure of the input image
– Note filters always extend the full depth of the input volume, e.g. for an RGB image the filters

have a depth of 3
– The filter slides over the input, taking a dot product at each position, resulting in an activa-

tion/feature map
• Multiple filters can be stacked together to get more output channels, for variety in feature spaces
• A CNN has a sequence of convolutional layers, interspersed with activation functions

Figure 1: CNN structure.

• Earlier layers in the stack will learn low-level features, and layers deeper in the network learn more
abstract features

– Eventually the data is transformed into a linearly separable form, which can be passed to fully
connected layer(s) to be processed into the final output

• Between fully connected layers, we can use pooling layers to reduce the size of the feature map to make
it more manageable

– Pooling layers are essentially downsampling the network spatially
– The depth of the map remains the same since we only pool spatially
– Pooling methods include max pooling and average pooling

Autoencoders

• Autoencoders are a type of model for unsupervised learning, which can be used for dimensionality
reduction

• Autoencoders consist of an encoder, mapping from input to feature space, and a decoder, mapping from
feature to output space

• Data is passed through the encoder and mapped into the feature space, and then mapped by the decoder
back into a reconstruction of the input

– Due to the reduction in dimension of the feature space, the reconstruction of the input will only
have the “important parts”

– Now we apply a loss function between the input and output data (usually l2)
• After training we can discard the decoder, and use the encoder as a dimensionality reducer

2



– We can use the encoder to initialize a supervised model – the output from the encoder can be fed
to a classier

– This is important for semi-supervised learning where we only have a small amount of labelled data
– Improves performance since the input is lower in dimension and already processed to only contain

the “important parts”

3


	Lecture 13, Mar 15, 2024
	Neural Networks – Training Considerations
	Weight Initialization

	Overfitting Prevention
	Convolutional Neural Networks (CNNs)
	Autoencoders



