
Lecture 12, Mar 12, 2024
Neural Networks

• w
(i)
jk denotes the weight for input k, from neuron j in layer i

• W (i), b(i) are the weight matrix and bias vector for layer i
• Each layer’s input is denoted by X ∈ RN×D and output is denoted by F̂

• Each layer’s output is computed as ϕ(i)
(

XW (i)T
+ b(i)T

)
• A linear activation function would see no benefit from stacking layers, so it is typically not used
• Other common activation functions are ReLU, soft/smooth/leaky ReLU, threshold (perceptron), logistic

(sigmoid), and tanh

Figure 1: Fully connected feedforward neural network.

• To find weights, we either minimize a loss (e.g. least-squares) or maximize a likelihood (e.g. Gaussian)
• A logistic sigmoid activation σ(z) = 1

1 + exp(−z) is used in classification to restrict the output range

to (0, 1), allowing us to interpret it as a probability
• For multi-class classification we assume an output distribution of a categorical (multinomial) distribution

– This leads us to the softmax function, ezj∑
k ezk

– For k = 2 we get back the sigmoid (up to a scaling)
• For numerical stability, use the LogSumExp function, i.e. taking the log of the softmax

Backpropagation

• A recursive procedure to find the gradient
• Consider the simple example f(x, y, z) = (x + y)z where x = −2, y = 5, z = −4

– We have q = x + y, so ∂q

∂x
= 1, ∂q

∂y
= 1, and f = qz so ∂f

∂q
= z, ∂f

∂z
= q

– To perform backpropagation, we start from the end of the computational graph and work backwards
– Use the chain rule to get successively deeper in the graph

• In a computational graph, each node is aware of only its surroundings: its local inputs x, y and its

1



Figure 2: Computational graph for the example.

output z, and some operation f that is applied
– We can compute a local gradient ∂z

∂x
and ∂z

∂y

• We also have the upstream gradient of the final output L with respect to the current node output, ∂L

∂z

• Now when we pass downstream, we pass ∂L

∂x
= ∂L

∂z

∂z

∂x
and ∂L

∂y
= ∂L

∂z

∂z

∂y

Figure 3: Illustration of the backpropagation algorithm.

• Given any function, first find its computational graph, then apply the algorithm recursively starting
from the output, until we reach the inputs we want

• The computational graph can be broken down into any level of granularity; e.g. instead of breaking a
sigmoid into a negation, exponentiation, addition, etc, we can treat the entire thing as a sigmoid gate

• We can observe some patterns in how common operations affect gradient flow:
– Add gates are gradient distributors: the upstream gradient is propagated as-is to both inputs
– Max and min gates are gradient routers: the upstream gradient is propagated as-is to only a single

input, while the other input(s) get zero (since they do not affect the output)
– Multiplication gates are gradient switchers: the gradient of one input is the upstream gradient

multiplied by the value of the other inputs

• One node can connect to two other nodes, in which case the upstream gradient is the sum of the
upstream gradients of all the nodes it connects to

– ∂f

∂x
=

∑
i

∂f

∂qi

∂qi

∂x
where qi are upstream nodes connected to this node

• The whole operation can be vectorized, replacing gradients with Jacobian matrices

2



Figure 4: Common operations in a computational graph.

3


	Lecture 12, Mar 12, 2024
	Neural Networks
	Backpropagation



