
Lecture 10, Feb 27, 2024
Quasi-Newton Methods (Symmetric Rank 1 (SR1))

• Recall that for quasi-Newton methods, since computing the inverse Hessian is expensive, we use
approximations to speed up computation

• Idea: use an iterative update routine to approximate the inverse Hessian
• Start with a quadratic approximation of the objective function f(θ) at the current iteration, mk(θ)
• mk(θ) = f(θk) + ∇⃗T f(θk)(θ − θk) + 1

2(θ − θk)T Bk(θ − θk)
– Bk ∈ Rn×n is an approximation of the inverse Hessian
– When θ = θk we have mk = f and ∇⃗mk = ∇⃗f
– These conditions are known as the zero and first-order consistency conditions

• The minimum of the quadratic model can be obtained by differentiating and setting to zero as usual
– θk+1 = θk −B−1

k ∇⃗f(θk)
• Using the new minimum, we construct a new quadratic approximation mk+1(θ) using the same formula

and the new approximate Hessian Bk+1
• To update the approximate Hessian, we impose the constraint that mk+1(θ) matches the gradient of

f(θ) at both θk and θk+1
– We want ∇⃗mk+1(θk+1) = ∇⃗f(θk+1) + Bk+1(θk − θk+1) = ∇⃗f(θk)
– Rearrange to get Bk+1(θk − θk+1) = ∇⃗f(θk)− ∇⃗f(θk+1)

* This is known as the secant equation
• Since the Hessian is SPD, we want Bk+1 to also be SPD

– Symmetry gives us 1
2n(n + 1) independent entries, but the secant equation only gives a system of

n equations
– To obtain a unique solution, we impose the constraint that Bk+1 should be closest to Bk

– Therefore we use the update formula: Bk+1 = Bk + uuT

* uuT is the “symmetric rank 1” matrix
* This guarantees that Bk+1 is close to Bk in terms of rank

• Let sk = θk+1 − θk, yk = ∇⃗f(θk+1)− ∇⃗f(θk)
– Rewrite the secant equation as Bk+1sk = yk

– Plugging in the SR1 update, Bksk + uuT sk = yk =⇒ u(uT sk) = yk −Bksk

* This means u = γ(yk −Bksk) where γ = uT sk is a scalar
– Plug this back in: γ2(yk −Bksk)(sT

k (yk −Bksk)) = yk −Bksk

– γ2 = 1
sT

k (yk −Bksk)

• The final update formula is Bk+1 = Bk + (yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

– However, this only gives the approximate Hessian and not its inverse (inverting at each iteration
would be too expensive)

Theorem

Sherman-Morrison-Woodbury (SMW) Formula: Given A ∈ Rn×n, u, v ∈ Rn×p, then

(A + uvT )−1 = A−1 −A−1u(1 + vT A−1u)−1vT A−1

• Using the SMW formula: B−1
k+1 = B−1

k +
(sk −B−1

k yk)(sk −B−1
k yk)T

(sk −B−1
k yk)T yk

– This gives a cost of O(n2) (compared to O(n3) for matrix inversion)
• An alternative approach to compute Bk+1 is to formulate it as a constrained optimization problem

– Bk+1 = min
B
∥B −Bk∥ subject to B = BT , B(θk − θk+1) = ∇⃗f(θk)− ∇⃗f(θk+1)

– The choice of matrix norm to use leads to different variations of the method:
* Davidon-Fletcher-Powell (DFP): B−1

k+1 = B−1
k −Ak + Ck

1



• Ak =
B−1

k ykyT
k B−1

k

yT
k B−1

k yk

• Ck = sksT
k

sT
k yk

• This is a rank-2 method
* Broyden–Fletcher–Goldfarb–Shanno (BFGS):

• B−1
k+1 =

(
1− skyT

k

sT
k yk

)
B−1

k

(
1− skyT

k

sT
k yk

)
+ sksT

k

sT
k yk

• Quasi-Newton methods generally have between linear and quadratic convergence; we calls this superlinear
• In problems where n is very large such that O(n2) is impractical, limiting-memory quasi-Newton

methods compute the search step directly

Constrained Optimization – Penalty Methods
• Consider the problem of minimizing f(θ) subject to constraints gi(θ) ≥ 0, hj(θ) = 0 where i = 1, 2, . . . , m

and j = 1, 2, . . . , q and θl ≤ θ ≤ θu

• Penalty methods minimize π(θ, ρk) = f(θ) + ρkϕ(θ)
– ϕ(θ) is the penalty function and ρk is the penalty parameter
– We want ϕ(θ) equal to zero when no constraints are violated and positive when constraints are

violated
– We need to ensure that the objective and the penalty function are appropriately scaled, so one

doesn’t dominate the other

• Quadratic penalty function: ϕ(θk) =
m∑

i=1
(max(0,−gi(θ)))2 +

q∑
i=1

(hi(θ))2

• Penalty methods template:
1. Check termination conditions
2. Minimize π(θ, ρk) to find θk+1
3. Increment the penalty parameter, ρk+1 > ρk

– Typically we multiply by a factor of 1.4 to 10, but this is problem dependent

Nonlinear Least Squares

• min
θ∈Rn

= 1
2

N∑
i=1

ri(θ)2 where ri(θ) = f̂(x(i), θ)− y(i)

– Assume N > n, i.e. we have more data points than dimensions

• Let r =

r1
...

rn

 ∈ RN and f(θ) = 1
2∥r(θ)∥2

2

• ∇⃗f(θ) =
N∑

j=1
rj(θ)∇⃗rj(θ) = J(θ)T r(θ)

– J(θ) =
[

∂rj

∂ri

]
∈ RN×n is the Jacobian

• ∇⃗2f(θ) =
N∑

j=1
∇⃗rj(θ)∇⃗rj(θ)T +

N∑
j=1

rj(θ)∇⃗2rj(θ)

= J(θ)T J(θ) +
N∑

j=1
rj(θ)∇⃗2rj(θ)

– The Jacobian is easy to compute, which gets us most of the way to the Hessian
– Often the second term is small so we can ignore it altogether and use the Jacobian to approximate

the Hessian
* This happens when the initial residual is small

2



Gauss-Newton Method

• This is similar to a modified Newton’s method with line search
• Use ∇⃗2f(θ) ≈ J(θ)T J(θ) as an approximation of the Hessian
• Solve J(θ)T J(θ)pk = −J(θ)T r(θk) for the search direction

– Update θk+1 = θk + αkpk where αk is chosen via line search
• In the case where the initial residual is small or approximately linear in θ, the Gauss-Newton method

can perform similar to the full Newton’s method, despite only computing first-order derivatives
• If J(θk) is full-rank and ∇⃗f(θk) ̸= 0, the search direction is always a valid direction

Stochastic Gradient Descent (SGD)

• In general we have loss function L(θ;D) = 1
N

N∑
i=1

l(θ; x(i), y(i))+λR(θ) given data D = { (x(i), y(i)) }
N

i=1

– This consists of the empirical loss and a regularization term

• ∇⃗L = 1
N

N∑
i=1
∇⃗l(θ; x(i), y(i)) + λ∇⃗R(θ)

• Applying the steepest descent method, we get the update θk+1 = θk − ηk∇⃗L(θk;D)
– ηk is the learning rate

* In classical methods we use backtracking line search to find this, but in machine learning we
typically choose this heuristically, as a constant

* e.g. start with a sensible value like η = 0.1; take smaller steps if objective gets worse or we see
oscillation; take larger steps if objective reduces too slowly

– Since we are computing the gradient over the full dataset D, this is known as full-batch gradient
descent

• Full-batch gradient descent is typically very expensive since we need to compute the gradient over the
entire dataset

• Procedure of SGD:
1. Shuffle training indices { 1, . . . , N }
2. Initialize θ0
3. Repeat until we reach some convergence criteria:

– For i from 1 to N , θ ← θ − η∇⃗l(θ; x(i), y(i))
• Each iteration of the outer loop is an epoch, where we loop over the full dataset
• SGD essentially uses only one datapoint at a time

– This works because the gradient using one datapoint is an unbiased estimator of the full gradient
– Let gt = l(θk; x(t), y(t)), we have that E[gt] = L(θk;D)

• Consider gradient descent over a GLM with M terms

– The cost of full-batch gradient descent is O(NM), and converges in O
(

log 1
ρ

)
– The cost of stochastic gradient descent is only O(M), and converges in O

(
1
ρ

)
iterations

* Even though SGD takes more iterations to converge (sub-linearly), it’s cheaper overall when
factoring in the cost per iteration

* Sometimes it’s not practical to do full-batch gradient descent due to the size of the dataset
• In mini-batch gradient descent we compute the gradient over a mini-batch that is smaller than the full

dataset, but more than 1 sample, in each iteration
– This is a compromise between full-batch gradient descent and SGD
– The larger the batch size, the closer we get to full-batch and the faster we converge (in iterations)

3


	Lecture 10, Feb 27, 2024
	Quasi-Newton Methods (Symmetric Rank 1 (SR1))
	Constrained Optimization – Penalty Methods
	Nonlinear Least Squares
	Gauss-Newton Method

	Stochastic Gradient Descent (SGD)


