Lecture 10, Feb 27, 2024
Quasi-Newton Methods (Symmetric Rank 1 (SR1))

Recall that for quasi-Newton methods, since computing the inverse Hessian is expensive, we use
approximations to speed up computation
Idea: use an iterative update routine to approximate the inverse Hessian
Start with a quadratic approximation of the objective function f(@) at the current iteration, my(0)
mi(0) = F(04) + T7F(0:)(0 — 00) + (6 — 0,)7 By(6 — 01)

— By, € R™™ is an approximation of the inverse Hessian

— When 8 = 6;, we have my = f and ﬁmk = ﬁf

— These conditions are known as the zero and first-order consistency conditions
The minimum of the qtiadratic model can be obtained by differentiating and setting to zero as usual

— 011 =0, — B, 'Vf(6))
Using the new minimum, we construct a new quadratic approximation my1(0) using the same formula
and the new approximate Hessian By
To update the approximate Hessian, we impose the constraint that myy1(0) matches the gradient of
(@) at both 8y and 0y

— We want mG+1(0k+1) == ﬁf(0k+1) +_’Bk+1(0k : 0k+1) = ﬁf(@k)

— Rearrange to get Br11(0x — 0r4+1) = VF(0r) — V(0r+1)

* This is known as the secant equation

Since the Hessian is SPD, we want By to also be SPD

1
— Symmetry gives us in(n + 1) independent entries, but the secant equation only gives a system of

n equations
— To obtain a unique solution, we impose the constraint that Byy; should be closest to By,
— Therefore we use the update formula: Byy1 = By + uu”
* yu® is the “symmetric rank 17 matrix
* This guarantees t_l}at By is glose to By, in terms of rank
Let s, = Op1 — Op, Yy = V[(Ory1) — Vf(Or)
— Rewrite the secant equation as By41Sk = Yk
— Plugging in the SR1 update, Bysy + uul s, =y, = 'u,(uTsk) =y, — Bpsy
* This means u = v(yx — Bysy) where v = u”l's;, is a scalar
— Plug this back in: +(yy — Bksk)(sg(yk — Bsi)) = yr — Bgsk
2o 1
st (yx — Brsk) .
The final update formula is By = By, + (yx — Brsk)(yr — Bisy)

(yr, — Brsi)T sy,
— However, this only gives the approximate Hessian and not its inverse (inverting at each iteration
would be too expensive)

Sherman-Morrison- Woodbury (SMW) Formula: Given A € R™*" u,v € R"*P, then

(A+ur) t=A"- A1 +v"A) 0T AT!

(sk — By 'yi)(sk — By 'yp)”
(s — By yi) Tyr
— This gives a cost of O(n?) (compared to O(n?) for matrix inversion)
An alternative approach to compute By is to formulate it as a c_gnstrainei optimization problem
= Bji1 =min| B — By subject to B = BT B0y, — 0111) = Vf(0r) — VI (6r11)
— The choice of matrix norm to use leads to different variations of the method:
* Davidon-Fletcher-Powell (DFP): B; !, = B, ' — Ay + Cy,

Using the SMW formula: Bk_jl = Bk_1 +

B! ykyk B,

. A=
ka yk
. Cp = sisk
Sk Yk

o This is a rank-2 method
* Broyden—Fletcher—Goldfarb—Shanno (BFGS):
b (1 g (1)l
E+1 = ST k T T
LYk S Yk Si. Yk
e Quasi-Newton methods generally have between linear and quadratic convergence; we calls this superlinear

e In problems where n is very large such that O(nQ) is impractical, limiting-memory quasi-Newton
methods compute the search step directly

Constrained Optimization — Penalty Methods

o Consider the problem of minimizing f(8) subject to constraints g;(6) > 0,h;(0) = 0 wherei =1,2,...,m
and j=1,2,...,qand 6; <0 <86,
o Penalty methods minimize 7(0, pr.) = f(0) + prd(0)
— ¢(0) is the penalty function and py is the penalty parameter
— We want ¢(6) equal to zero when no constraints are violated and positive when constraints are
violated
— We need to ensure that the objective and the penalty function are appropriately scaled, so one

doesn’t dominate the other .

o Quadratic penalty function: ¢(6;) = z:(max(o7 —gi(0)))* + Z(hi(e))2
e Penalty methods template: = =
1. Check termination conditions
2. Minimize 7(8, pi) to find 0y,
3. Increment the penalty parameter, pg11 > pi
— Typically we multiply by a factor of 1.4 to 10, but this is problem dependent

Nonlinear Least Squares

N

. gxéliRr}l = ;;m(e)? where r;(8) = f(z?,0) —

— Assume N > n, i.e. we have more data points than dimensions

!

e Let r=|: | €RY and f(0) = %H'f’(@)”%
rTL
N

« VI(0) =) ri(6)Vr;(6) = J(6)"r(6)
j=1

N
. 6%}%0)226 (0 VTJ —1-27“] Vrj

= er V r; (0

— The Jacobian is eaby to compute, which gets us most of the way to the Hessian
— Often the second term is small so we can ignore it altogether and use the Jacobian to approximate
the Hessian
* This happens when the initial residual is small

Gauss-Newton Method

This is similar to a modified Newton’s method with line search
Use V2f(8) ~ J(0)TJ(8) as an approximation of the Hessian
Solve J(0)TJ(0)py, = —J(8)"r(8)) for the search direction
— Update 0y41 = 0y, + apr where ay is chosen via line search
In the case where the initial residual is small or approximately linear in 8, the Gauss-Newton method
can perform similar to the full Newton’s method, despite only computing first-order derivatives
If J(6},) is full-rank and V f(8;) # 0, the search direction is always a valid direction

Stochastic Gradient Descent (SGD)

N
i=1

In general we have loss function £(6; D) Zl 0;), 4)) 4+ \R(8) given data D = { (¥, 5)}
— This consmts of the empirical loss and a regularlzatlon term

S 71(0: (1) 4, Y

VL= sz(o,m ,y') + AVR(0)

Applying the steepest descent method, we get the update 011 = 0 — nkﬁﬁ(Ok; D)

— 1 is the learning rate

* In classical methods we use backtracking line search to find this, but in machine learning we

typically choose this heuristically, as a constant
e.g. start with a sensible value like 7 = 0.1; take smaller steps if objective gets worse or we see
oscillation; take larger steps if objective reduces too slowly

— Since we are computing the gradient over the full dataset D, this is known as full-batch gradient

descent

Full-batch gradient descent is typically very expensive since we need to compute the gradient over the
entire dataset
Procedure of SGD:

1. Shuffle training indices {1,..., N }

2. Initialize 6

3. Repeat until we reach some convergence criteria:

— For i from1to N, 8 < 0 — nﬁl(@;w("’),ym)

Each iteration of the outer loop is an epoch, where we loop over the full dataset
SGD essentially uses only one datapoint at a time

— This works because the gradient using one datapoint is an unbiased estimator of the full gradient

— Let g; = 1(8; 2™, y)), we have that E[g,] = L(8; D)
Consider gradient descent over a GLM with M terms

1
— The cost of full-batch gradient descent is O(NM), and converges in O <1og >
p

*

1
— The cost of stochastic gradient descent is only O(M), and converges in O () iterations
p

* Even though SGD takes more iterations to converge (sub-linearly), it’s cheaper overall when
factoring in the cost per iteration
* Sometimes it’s not practical to do full-batch gradient descent due to the size of the dataset
In mini-batch gradient descent we compute the gradient over a mini-batch that is smaller than the full
dataset, but more than 1 sample, in each iteration
— This is a compromise between full-batch gradient descent and SGD
— The larger the batch size, the closer we get to full-batch and the faster we converge (in iterations)

	Lecture 10, Feb 27, 2024
	Quasi-Newton Methods (Symmetric Rank 1 (SR1))
	Constrained Optimization – Penalty Methods
	Nonlinear Least Squares
	Gauss-Newton Method

	Stochastic Gradient Descent (SGD)

