
Lecture 9, Mar 12, 2024
General A/D Conversion

• Generally ADCs consist of two components: sample & hold and quantizer
– The sample & hold takes a snapshot of the input voltage level (on sample clock) and holds it

constant, even if the input changes
* This is needed because quantization takes time, so the input to the quantizer cannot change

during this time
– The quantizer maps the input voltage to an n-bit signal and put into an SFR

* More modern processors with DMA can write this directly to a location in shared memory
• The input voltage in the range of 0 to Vref is mapped to the entire digital output range

– Having a stable reference voltage is important
– Internal ADCs often have reference voltages that can vary due to temperature changes, etc, causing

the ADC output to drift over time
– External ADCs do a lot to make Vref constant

• A naive quantization scheme would simply divide the full range into the 2n possible output values and
maps input to output evenly

– However, for the max and min input levels, the quantization error is equal to Vref

2n
since we can’t

go below zero or above max
• A more common quantization scheme will use only half a division at the top and bottom of the input

range
– Now each digital unit maps to a range of Vref

2n − 1
– The worst-case quantization error is now 1

2 · Vref

2n − 1
– More modern hardware will do this, because the precision lost by doing this becomes negligible at

higher bit widths

Figure 1: Different quantization schemes. Left: naive quantization, right: better quantization.

• Most ADCs can only sample at fixed intervals; they require setup time, hold time, and output time,
which is often significant compared to the CPU clock

– Many features can increase this time, e.g. hardware oversampling/averaging
– ADC data will lag behind real time!

• The Nyquist-Shannon Sampling Theorem states that we must sample at at least twice the frequency of
the highest component of the input, otherwise we will get aliasing

1



– Some ADCs will have Nyquist filters built-in to avoid this (the input will be passed through a
low-pass filter)

– If the ADC does not have one built-in, we need additional hardware to do the filtering, since it’s
not possible to do this in software

Figure 2: Illustration of aliasing.

External ADCs

• Most microcontrollers have internal ADCs, however these often have low specs when it comes to bit
width, Vref stability, accuracy, speed, etc

• External ADCs can send the data in parallel, serial, serial shift register, or some other protocol
• Depending on the ADC implementation/structure, we can get very different conversion speeds, precisions,

etc
• A flash ADC uses a ladder of 2n comparators to directly quantize the input

– The output is generated almost instantly
– Highly impractical for large bit widths

• Single-slope ADCs use a triangle/ramp signal (from a counter + DAC) and a comparator to find the
signal level

– The counter counts up and raises the reference; whenever the reference exceeds the input, we take
the current value of the counter as the output

– However this is very slow, so true single-slope ADCs are mostly obsolete
• A dual-slope ADC counts up as well as down, giving essentially twice the conversion speed
• An integrating/multi-slope ADC tries to keep the reference near the input signal so we don’t waste too

much time counting
– These work the best on slowly-changing signals but bad on rapidly changing signals
– Integrating/multi-slope ADCs are complex and expensive but much faster

Figure 3: Dual-slope ADC.

• Successive approximation ADCs (SARs) essentially performs a binary search to find the correct output
value

– This is used by the lab HCS12s
– This doesn’t scale well with larger bit widths and faster speeds, but they are still good and common

in older hardware
• The more precise the output, the more time and complexity the ADC will take

2



Figure 4: Integrating/multi-slope ADC.

Figure 5: Comparison of ADCs.

3



Digital I/O
• Some CPUs have dedicated instructions for I/O

– This is uncommon because this ties the ISA to the actual pin count of the chip
• Most CPUs use SFRs to control I/O; often one SFR is used per port
• Pin configuration (input or output, open drain, etc) is also set via SFRs
• In older hardware, each physical pin on the microcontroller has only a small number of functions or a

single fixed function
– This is convenient for the programmer, but hard to expand, is wasteful of pin count, and hard to

design the wiring
• In modern hardware each pin often has many selectable functions; each pin is multiplexed

– e.g. modern PIC chips have a peripheral pin select (PPS) system that allows near-complete
remapping of pins

– This allows much easier layout of hardware
– Often accomplished through a matrix mapping

• When interfacing with digital I/O, we must be mindful of:
– Voltage ranges of signals (e.g. 3.3 or 5 volt logic)
– Noise margins of different parts (i.e. the ranges that are considered high/low; this can be considered

different even within 3.3 or 5 volt logic)
* When one device outputs a logic high, it could be anywhere within the noise margin
* We need to ensure that the noise margins match or the margin of the source device is contained

within the margin of the destination device
* Many different standards exist for noise margins and logic thresholds

– Fan-in/fan-out (i.e. loading effects when driving multiple things)

Figure 6: Noise margin compatibility.

• Some devices have compatibility with different logic levels; a lower voltage device can sometimes
interpret a higher voltage input and withstand it without damage

– This does not guarantee that it works the other way around!
• If logic levels and noise margins are incompatible, we need hardware logic level shifters; these are often

simple and easily implemented with MOSFETs
– However, these add a slight propagation delay

4



Figure 7: Example designs for logic level shifters.

5


	Lecture 9, Mar 12, 2024
	General A/D Conversion
	External ADCs

	Digital I/O


