
Lecture 8, Mar 5, 2024
Interrupts – Data Sharing

• Transfer of data to and from ISRs is done through shared global variables
• Since interrupts can occur at any time, this can lead to race conditions
• The interrupt may occur and write to a variable during a sequence of operations in which the variable

is assumed constant
– e.g. comparing two variables that are set in an ISR; the interrupt can occur after the main

code reads one of the values, and update the other value before it is read from main, leading to
inconsistency

– This can occur at the end of any assembly instruction, and not just high-level code constructs
– An interrupt can occur in the middle of a line of code that gets translated to multiple instructions!

• Critical sections access important shared resources/variables and thus must prevent multiple access to
those resources

– Disable interrupts at the beginning and re-enable them at the end to prevent multiple access
– Critical sections must be as short as possible, since disabling interrupts directly increases system

latency
* Critical sections that are too long can lead to comatose states

– To reduce their size, make local copies of shared data, e.g. for a comparison, load the two variables
into temporaries in a critical section and compare the temporaries outside the critical section

• Some compilers have the ability to disable certain unsafe optimizations
– e.g. volatile in C tells the compiler that the variable’s value may change at any time

Interfacing Sensors
• Sensors can be categorized by output type broadly into either analog or digital

– Within analog output, we can classify sensor output into either DC/low rate-of-change (ROC) or
a general continuous-time signal (higher frequency)

– Within digital output, we can classify sensor output as word-based, encoded into something like
PWM, or some other communications protocol

Figure 1: Types of sensor output along with preferred handling methods.

• Sensors can also be classified by output data frequency (i.e. how often the data changes)

1-Bit A/D Conversion
• This would be used for a signal that changes slowly or takes on only a few fixed values
• We want to compare the analog voltage level with a threshold to generate a 1 or 0
• This can be done using a comparator, which is like an op-amp without a feedback loop, so it outputs

either 1 or 0 depending on which input voltage is higher

1



Figure 2: Types of sensor frequency along with preferred handling methods.

– This allows for high-speed comparison
– If we input a triangle wave and a reference voltage to a comparator, we can implement PWM by

changing the reference voltage
• Many modern platforms have built-in comparators, the inputs of which can be mapped to GPIO pins

via SFRs
• For input voltages near the threshold, we could have the result change rapidly between 1 and 0 due to

oscillations, caused by noisy data, control lag, etc

Figure 3: Incorrect triggering of output due to noise in the signal.

• This can be addressed with hysteresis: split the reference into an upper and lower bound; if the input is
over the upper reference, output 1; if it’s under the lower reference, output 0; if it’s between, hold the
previous output

– This can be implemented with a changing reference signal; when output is high, set reference to
low bound, and when output is low, set reference to high bound

– This is good for dealing with noise in either the signal or the reference itself
– Another application is quasi-digital signals such as button presses, encoder outputs, etc
– In analog, hysteresis is implemented using a positive feedback from output to reference, or via

dedicated triggers such as Schmitt triggers

• The effects of hysteresis on a slow-responding control system is to increase the oscillation period (so the
output switches less frequently), but the magnitude will increase

• Filters can be used on noisy data
– These can be implemented in hardware or software depending on tradeoff of added parts/circuit

complexity vs. added code complexity/load on CPU, and sampling rate requirements
– Noisy signals can be smoothed out, but this introduces information loss and a phase shift
– Best applied for high-frequency noise that is distinct from the frequency of the signal
– However, this often can’t eliminate all noise and incorrect switching by itself

• Another method is to use triggering methods, such as multivibrator circuits
– Switch debouncing is one common application

• Multivibrators come in 3 variants:
– Astable: an oscillator (not useful for us)

2



Figure 4: Illustration of hysteresis.

Figure 5: Illustration of hysteresis.

Figure 6: Analog comparator with hysteresis.

3



– Monostable: a single stable state that the multivibrator will stay in; the state switches to an
unstable state on some signal input, and switches back after a set amount of time

* The time parameter should be tuned based on actual hardware, long enough to ignore
temporary noise but short enough to not miss data that comes after

* This effectively makes all pulses at least a certain duration wide
– Bistable: both states are stable (needs an external reset trigger signal to reset the state)

• While hysteresis needs to be implemented in the comparator itself, a multivibrator can be attached
after the comparator to have the same effect

– This is useful when we have comparators in hardware that we cannot modify
– This also makes more sense to do in software, as we do not need true digital filtering

Figure 7: Response of a monostable multivibrator trigger.

Figure 8: Response of a bistable multivibrator trigger.

4


	Lecture 8, Mar 5, 2024
	Interrupts – Data Sharing
	Interfacing Sensors
	1-Bit A/D Conversion


