
Lecture 7, Feb 27, 2024
Memory Mapping

• In a unified memory space, the code, data, and stack are together, and the compiler can arrange these
easily to optimize

• In embedded systems, we often have separated memory spaces
– Compilers have a hard time understanding and optimizing these, because some sections of memory

can support different types of access, have different speeds, etc
– We may need to e.g. explicitly tell the compiler to put something in non-volatile memory so it

doesn’t take up RAM
• Typically external memory cannot be utilized automatically by the compiler

– Some microcontrollers may have DMA to access these, but compilers doesn’t understand these
– The way to do this typically varies per-chip and per-compiler

• Therefore we need to understand how the compiler does low-level optimization (what it does and doesn’t
optimize) to write good high-level code

Optimization and Compilation
• For embedded systems, compiler toolchains are often a lot less developed than for desktop architectures,

so we need to be mindful of writing optimized or easy-to-optimize code
• We usually optimize for one of two metrics: execution time and program space

– Often faster code is shorter code, but this is not always true (e.g. unrolling a loop)
• Optimizing code too heavily will lead to unreadable and unmaintainable code

– Only optimize timing-critical or heavily reused/iterated code
• There are 3 common forms of optimization:

– Global optimization: making algorithmic changes to the code over multiple lines
* This is high-level (before code generation) and often difficult for compilers

– Local optimization: making optimizations within a single line/expression/statement
* Even basic compilers generally do this well
* We are not expected to do this by hand

– Keyhole/peephole optimization: runs on the final assembly code and optimizes a few instructions
at a time

* Uses a sliding window and tries to match known optimizations
* No human intervention
* When two templates meet, there can be inefficiencies, e.g. storing a register into memory only

to load it back again; this will be optimized away by keyhole optimization
* Note that we can’t always apply an optimization, due to e.g. interrupts, SFRs, DMA, etc

• Global optimization techniques:
– Loop unrolling: expanding a fixed-length loop into repeated code

* Increases code size but avoids overhead of looping
* Unrolled code is less readable and harder to maintain
* Compilers are often good at this, but only if the loop length is well-known (constant)

– Code motion: factoring out unchanging code from inside a loop
* e.g. if we’re indexing a constant index of a constant array in a loop, we can move the indexing

outside the loop and only do it once
* Certain embedded compilers will be able to do this
* Note that this uses extra temporary storage

– Strength reduction: using loop structures to convert more complex/slower operations into simpler
ones

* e.g. if we’re assigning x[i] = c * i in a loop over i, we can convert the multiplication to
successive additions

* Array operations are often a common source of these optimizations
* Whether this is worth doing depends heavily on the platform and how fast each type of

instruction executes

1



– Common sub-expression elimination: factoring out common sub-expressions that are used multiple
times, and only doing it once

* Compilers do this pretty well
– Lookup tables: using pre-computed lookup tables instead of computing everything

• Local optimization techniques:
– Coalescence: using the instruction set (side effects) to compile multiple operations

* e.g. x = x + y would normally be 4 instructions (2 loads, 1 add, 1 store) but can often be
optimized to just one

– Constant folding: pre-calculating constant values
– Local strength reduction: strength reduction within a line

* e.g. multiplication by powers of 2 to shifting, exponentiation to repeated multiplication, etc
– Machine idioms: making use of specialized instructions on the microcontroller

* e.g. counting down instead of up in a loop if comparison with zero is faster

Interrupts
• Interrupts are events that asynchronously affect the program flow

– Calls to the interrupt service routine (ISR) are done automatically in response to the interrupt
source

– The ISR is called like a regular function, but it can be called at any time in the program flow
• Interrupt sources are often external, but we can have internal software-generated interrupts (SWI) as

well
• The ISR is a special subroutine executed on an interrupt; since it can be called at any point during

program execution, it must:
– Make no assumptions about program or microcontroller state (e.g. register contents)
– Make no (unexpected) modifications to the microcontroller state on exit

* Back up all registers and SFRs that we use
* Some architectures back up registers automatically on the stack
* Returning is usually done via a specialized return from interrupt instruction

– As fast and short as possible, and have a deterministic exit condition (i.e. won’t hang)
* Avoid:

• Extensive shared resource use
• Calls to additional subroutines (which can use a lot of stack)
• Waiting for hardware, polling, delays

* Use timeouts or failsafes
• Interrupts are typically not enabled by default, so we have to set them up first

– In ASM we define or set jump points through an interrupt vector table or set of SFRs
– In high-level code this is often done with function pointers, pragmas, etc

• The vector table is used by the CPU to look up the address of the ISR to jump to
– Often we don’t have a one-to-one mapping from interrupt source to ISR due to hardware cost
– In the ISR we need to scan through and identify the source of the interrupt

* This can be costly for heavily overloaded ISRs, especially external interrupts
• Interrupts can come from a number of sources:

– External interrupt lines (IRQ lines)
* Triggering can occur on positive or negative edge, level triggering, or user-defined

– Peripheral events (e.g. timers, ADC, protocol peripherals)
– Software interrupts (SWI)

* This can be used for exception handling, multi-tasking, debuggers, etc
• All platforms provide a method to mask interrupts, selectively enabling or disabling interrupts

– However, even when interrupts are masked, they often still accumulate in hardware and will trigger
once we restore interrupts

– We usually disable interrupts of the same source while in the ISR for that source, since the ISRs
themselves can be interrupted

– This is done using a CLI instruction to clear masks (allow interrupts) and SEI instruction to set

2



masks (disable interrupts)
* Modern systems will have SFRs per interrupt source

• Some critical interrupts cannot be masked (non-maskable interrupts, NMIs)
– This is used for critical tasks like bootloaders, watchdogs, e-stops, etc

• If two interrupts occur simultaneously, or we have multiple interrupts waiting after clearing the mask,
interrupt priority is used to determine which gets handled first

– This is often configurable in modern microcontrollers through a table; older platforms have a fixed
table

– Note this completely ignores order of arrival; higher priority interrupts are always handled before
lower ones

– We need to be more careful with high-priority interrupts so they don’t monopolize the CPU

3


	Lecture 7, Feb 27, 2024
	Memory Mapping
	Optimization and Compilation
	Interrupts


