Lecture 6, Feb 13, 2024
Code Reuse

Inline Functions and Macros

e Inline functions or macros are code blocks defined once and duplicated by the assembler or compiler
each time it’s used
e Since no function call is involved, they have no overhead, can be easily optimized, and is simple to
implement
e However duplicating them each time means inefficient code memory usage, so we should keep them
short
o Usually they will make explicit assumptions about the program state (e.g. operands are in certain
registers)
— Should only contain re-locatable code (i.e. no jumping to fixed addresses within the code block)
— Also cannot contain recursion!
o Best used for code that are executed often (e.g. inside a loop), but called/used in few other places

Subroutines

e Subroutines are defined and compiled once; to execute them, code execution jumps to the memory they
occupy and jumps back after they’re done
— The code does not strictly need to be relocatable
— Reduces code memory usage since only one copy is needed
— However, calling and passing arguments introduces some overhead, which could amount to a
significant amount if the subroutine itself is short
— Also harder to optimize since the subroutine code needs to be as generic as possible, so each call
cannot be optimized by itself
e A call instruction saves the current PC on the stack and jumps to the subroutine
— A return instruction loads the saved PC and jumps to that location, returning to the point before
the subroutine call
o A safe subroutine has to back up any registers it uses on the stack as to not interfere with any calling
code
— Some CISC microcontrollers might do this automatically on call instructions
— This is uncommon today, since it introduces large overhead and backs up all registers, even the
ones that aren’t used in the subroutine
* This is still done commonly for interrupts
— At the start of the function, we push any registers we need to use, then at the end of the function
we pop in opposite order to restore them
* Sometimes we may back up SFRs as well
e Variable passing can be accomplished in a number of ways:
— Using registers can work if we need few parameters, and saves overhead
— Using memory (fixed locations) require agreement on locations, and struggles for variable-length
data and recursion
— Using the stack is the best and most general option, which is preferred for an automatic imple-
mentation by compilers
* To pass variables or return values on the stack, we need a special addressing mode that allows
us to access earlier points in the stack, since the top of the stack will store the PC

Example: Call/Return Compilation Example

int max(int a, int b) {
if (a > b)
return a;
else
return b;

}

void main(void) {
int ¢c =1, d = 6;
int e = max(c, d);

e Assume:

— main() starts at 0x0100, max () starts at 0xFO00
— Instructions with register-only operands are one byte long, while others are one byte plus any
immediates
— We have 3 registers RO, R1, R2
— ints and registers are 16-bit
— Branching instructions use 8-bit offsets
— Stack grows upwards, SP points to next available address
— Big-endian system
— Stack-based call and return
* Note: in reality the compiler will likely use registers for argument passing, or optimize this
into an inline function/macro due to its short length

e Variable assignment:

— In main():
* ¢ RO
* d —R1
* e —»R2
* All variables have scope ending only when program terminates
— In max():
* a —RO
* b —R1
* Both variables have scopes that exist through the entire function, and only in the function
* Since c and d are still in scope at this point, we need to backup the registers

e Code for main():

0x0100 MOV RO, #0x0001

0x0103 MOV R1, #0x0006

0x0106 PUSH RO ; First arg

0x0107 PUSH R1 ; Second arg

0x0108 ADD SP, #0x0002 ; Space for retwal
0x010B CALL 0xF000

0x010E POP R2 ; Retrieve return value
0x010F SUB SP, #0x0004 ; Clear args from stack

e Code for max():

0xFO000 PUSH RO ; Back up registers
0xFO001 PUSH R1

0xF002 MOV RO, [SP - 12] ; Load arg a

0xF005 MOV R1, [SP - 10] ; Load arg b

0xF008 CMP RO, R1 ; tf (a <=b) goto else;
0xFO009 BLE #0x0008

0xFOOB Mov [sp - 8], RO ; Return a (note 2 bytes for offset)
0xFOOE BRA #0x0003

0xF010 MOV [SP - 8], R1 ; Return b

0xFO013 POP R1 ; Restore registers
0xFO014 POP RO

0xFO015 RET

o Stack contents are shown in the table below

— By the start of the function call SP is at 0x2008, right after PC
— By the end of the call the SP is back to 0x2005, exactly where it was before the call
— At the end of the program, the stack pointer should be back to 0x2000 if we cleaned up properly

Address Data Comment

0x200B ... R1 backup, low byte
0x200A ... R1 backup, high byte
0x2009 ... RO backup, low byte
0x2008 RO backup, high byte

0x2007 O0xOE PC, low byte
0x2006 0x01 PC, high byte
0x2005 7 Space for return
0x2004 7 Space for return
0x2003 0x06 R1, low byte
0x2002 0x00 R1, high byte
0x2001 0x01 RO, low byte
0x2000 0x00 RO, high byte

	Lecture 6, Feb 13, 2024
	Code Reuse
	Inline Functions and Macros
	Subroutines
	Example: Call/Return Compilation Example

