
Lecture 6, Feb 13, 2024
Code Reuse
Inline Functions and Macros

• Inline functions or macros are code blocks defined once and duplicated by the assembler or compiler
each time it’s used

• Since no function call is involved, they have no overhead, can be easily optimized, and is simple to
implement

• However duplicating them each time means inefficient code memory usage, so we should keep them
short

• Usually they will make explicit assumptions about the program state (e.g. operands are in certain
registers)

– Should only contain re-locatable code (i.e. no jumping to fixed addresses within the code block)
– Also cannot contain recursion!

• Best used for code that are executed often (e.g. inside a loop), but called/used in few other places

Subroutines

• Subroutines are defined and compiled once; to execute them, code execution jumps to the memory they
occupy and jumps back after they’re done

– The code does not strictly need to be relocatable
– Reduces code memory usage since only one copy is needed
– However, calling and passing arguments introduces some overhead, which could amount to a

significant amount if the subroutine itself is short
– Also harder to optimize since the subroutine code needs to be as generic as possible, so each call

cannot be optimized by itself
• A call instruction saves the current PC on the stack and jumps to the subroutine

– A return instruction loads the saved PC and jumps to that location, returning to the point before
the subroutine call

• A safe subroutine has to back up any registers it uses on the stack as to not interfere with any calling
code

– Some CISC microcontrollers might do this automatically on call instructions
– This is uncommon today, since it introduces large overhead and backs up all registers, even the

ones that aren’t used in the subroutine
* This is still done commonly for interrupts

– At the start of the function, we push any registers we need to use, then at the end of the function
we pop in opposite order to restore them

* Sometimes we may back up SFRs as well
• Variable passing can be accomplished in a number of ways:

– Using registers can work if we need few parameters, and saves overhead
– Using memory (fixed locations) require agreement on locations, and struggles for variable-length

data and recursion
– Using the stack is the best and most general option, which is preferred for an automatic imple-

mentation by compilers
* To pass variables or return values on the stack, we need a special addressing mode that allows

us to access earlier points in the stack, since the top of the stack will store the PC

Example: Call/Return Compilation Example

int max(int a, int b) {
if (a > b)

return a;
else

return b;

1



}
void main(void) {

int c = 1, d = 6;
int e = max(c, d);

}

• Assume:

– main() starts at 0x0100, max() starts at 0xF000
– Instructions with register-only operands are one byte long, while others are one byte plus any

immediates
– We have 3 registers R0, R1, R2
– ints and registers are 16-bit
– Branching instructions use 8-bit offsets
– Stack grows upwards, SP points to next available address
– Big-endian system
– Stack-based call and return

* Note: in reality the compiler will likely use registers for argument passing, or optimize this
into an inline function/macro due to its short length

• Variable assignment:

– In main():
* c →R0
* d →R1
* e →R2
* All variables have scope ending only when program terminates

– In max():
* a →R0
* b →R1
* Both variables have scopes that exist through the entire function, and only in the function
* Since c and d are still in scope at this point, we need to backup the registers

• Code for main():

0x0100 MOV R0, #0x0001
0x0103 MOV R1, #0x0006
0x0106 PUSH R0 ; First arg
0x0107 PUSH R1 ; Second arg
0x0108 ADD SP, #0x0002 ; Space for retval
0x010B CALL 0xF000
0x010E POP R2 ; Retrieve return value
0x010F SUB SP, #0x0004 ; Clear args from stack

• Code for max():

0xF000 PUSH R0 ; Back up registers
0xF001 PUSH R1
0xF002 MOV R0, [SP - 12] ; Load arg a
0xF005 MOV R1, [SP - 10] ; Load arg b
0xF008 CMP R0, R1 ; if (a <= b) goto else;
0xF009 BLE #0x0008
0xF00B MOV [SP - 8], R0 ; Return a (note 2 bytes for offset)
0xF00E BRA #0x0003
0xF010 MOV [SP - 8], R1 ; Return b
0xF013 POP R1 ; Restore registers
0xF014 POP R0
0xF015 RET

2



• Stack contents are shown in the table below

– By the start of the function call SP is at 0x2008, right after PC
– By the end of the call the SP is back to 0x2005, exactly where it was before the call
– At the end of the program, the stack pointer should be back to 0x2000 if we cleaned up properly

Address Data Comment
0x200B . . . R1 backup, low byte
0x200A . . . R1 backup, high byte
0x2009 . . . R0 backup, low byte
0x2008 . . . R0 backup, high byte
0x2007 0x0E PC, low byte
0x2006 0x01 PC, high byte
0x2005 ? Space for return
0x2004 ? Space for return
0x2003 0x06 R1, low byte
0x2002 0x00 R1, high byte
0x2001 0x01 R0, low byte
0x2000 0x00 R0, high byte

3


	Lecture 6, Feb 13, 2024
	Code Reuse
	Inline Functions and Macros
	Subroutines
	Example: Call/Return Compilation Example



