
Lecture 4, Jan 30, 2024
Addressing Modes

• Inherent addressing: address, data, or register is inherently specified by the instruction
– Used by instructions that either don’t take any operands, or operands are fixed by the instruction
– e.g. NOP

• Immediate addressing: a constant value is explicitly stored within the code and used by the instruction
– e.g. MOV R0, 0xAF
– For word sizes above 1 byte, this will have to respect endianness
– Best used to implement constants, since it is faster but not modifiable

• Register addressing: operands are registers
– e.g. MOV R0, R1
– Generally accumulator based or RISC architectures restrict where accumulators and general

purpose registers can appear as operands
– Best used to implement transfers or variable assignment
– Limits us to the width of our registers

• Direct addressing: specifies a memory location to access (i.e. a constant pointer)
– e.g. MOV [0xA000], 0xAF
– The addresses themselves are stored within the instruction and are constant
– Best used to implement global variables, constant loading, memory-mapped I/O, etc.
– If we only use direct addressing, we need to make all variables global in scope and pre-assign fixed

addresses to every variable
• Indirect addressing: the memory location in the operand contains the address of the data to be used by

the instruction (i.e. a true pointer)
– e.g. MOV R0, @[0xA000]

* The memory at 0xA000 is read, and interpreted as a memory address, and then data from
that address is put into R0

– Best used to implement pointers, arrays, etc, to implement data structures and pass data to
subroutines

– However, this uses 2 or more memory accesses per instruction, which are slow
• The below addressing modes are outside the minimum required set, so some microcontrollers might not

support them, especially RISC
• Register indirect addressing: the register in the operand contains the address of the data to be used

– e.g. MOV R0, @R1 or MOV R0, @@R1 (dereference twice, usually only on CISC)
– Allows us to dynamically create and destroy new pointers
– Allows doing math on pointers for e.g. array access with variable indices
– Address space is again limited to register width, so we might not be able to access all the memory
– Can become a vector for attack if a malicious actor can put data into the register

• Indexed addressing: a family of addressing modes to used to add indexing many of the previous modes
– Relative addressing: relative to current program counter, e.g. BRR 0x05

* Useful for flow control
– Base register: adding offset to register value, e.g. MOV R0, @[R1 + 5], MOV R0, @[R1 + R2]

* This is very useful for array dereferencing and data structures in general
• Other exotic modes (these are much less common)

– Base plus index plus offset: effective address is the sum of all 3 (for supporting 2D arrays)
– Scaled: effective address is the base address plus a scale times an index (for addressing arrays)
– Register auto-increment/decrement

Example 1: Factorial

• Example: compute the factorial of a number stored in R0, assume 3 general purpose registers R0 to R2
are available and ignore checking pre-conditions

• Assume for the purposes of this example that we cannot modify R0

1



• Translate from C code:

int n;
int fact = 1;
for (int i = 1; i <= n; i ++) {

fact *= i;
}

• Create variable assignment table:

Variable Assignment Scope
n R0 Global
fact R1 Global
i R2 Local to for

• Code generation:

MOV R1, 0x01 ; int fact = 1; // note assumption that registers are 8-bit
MOV R2, 0x01 ; int i = 1;

loop:
CMP R2, R0
BGT end ; if (i > n) { break; }
MUL R1, R2 ; fact = fact * i;
INC R2 ; i ++;
BRA loop

end:

• Note we used labels here for the relative branch instructions; if not, we would have to compute the
offsets ourselves

– Assuming each instruction takes 2 bytes, the BGT would have an offset of 0x06 while the BRA would
have 0xF6 (-10)

Example 2: Square Root

• Example: calculate the square root of a number S in R0 by the following procedure:

– Set xn = S/2

– Iterate xn+1 = 1
2

(
xn + S

xn

)
• Code generation:

MOV R1, R0 ; int x_n = S;
DIV R1, 2 ; x_n = x_n / 2;

loop:
MOV R2, R0 ; int temp = S;
DIV R2, R1 ; temp = temp / x_n;
ADD R1, R2 ; x_n = x_n + temp;
DIV R1, 2 ; x_n = x_n / 2;
BRA loop

2


	Lecture 4, Jan 30, 2024
	Addressing Modes
	Example 1: Factorial
	Example 2: Square Root



